Effect of disulphide bonds and sulphhydryl concentrations on properties of wheat flour


Cuicui L., Qiyu L. (2020): Effect of disulphide bonds and sulphhydryl concentrations on properties of wheat flour. Czech J. Food Sci. 38: 265–272.

download PDF

Disulphide bonds and sulphhydryl concentrations were evaluated to determine the effects on rheological, thermodynamic, pasting, and dynamic rheological characteristics of mixed flours. Gluten samples, first treated with sodium sulphite of different concentrations, were added into flour at a 4% level, which had a significant impact on free sulphhydryl, disulphide bonds, and the ratio of the two indices. There was no relevance between the ratio and other parameters except for free sulphhydryl. The mixed flour doughs had reduced water absorption, dough development time, dough stability time as well as degree of weakening (P < 0.05). Disulphide bonds were associated negatively with the rate of starch gelatinisation (C3–C2), peak, and setback and these characteristics were correlated strongly with dough development time, dough stability time, and progressive protein weakening (C2–C1). The stability of starch gelatinisation and cooking stability of mixed flours did not remain significantly different. The larger the concentration of sodium sulphite, the higher the peak, breakdown, final viscosity, and setback values, but there were no significant differences between samples. For all samples, storage modulus and loss modulus increased with increasing scanning frequency. For mixed doughs, the trend lines of moduli decreased with increasing levels of reduction in added gluten. There was no substantial effect on thermal properties of flours.

Alvarezjubete L., Arendt E.K., Gallagher E. (2010): Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science & Technology, 21: 106–113.
Arendt E.K., O’Brien C.M., Schober T.J., Gormley T.R., Gallagher E. (2002): Development of gluten-free cereal products. Farm and Food, 12: 21–27.
Avi G., Lida A., Koushik S. (2012): Effects of cellulosic fibre on physical and rheological properties of starch, gluten and wheat flour. International Journal of Food Science & Technology, 45: 1641–1646.
Barak S., Mudgil D., Khatkar B.S. (2013): Relationship of gliadin and glutenin proteins with dough rheology, flour pasting and bread making performance of wheat varieties. LWT – Food Science and Technology, 51: 211–217. https://doi.org/10.1016/j.lwt.2012.09.011
Beveridge T., Toma D.J., Nakai S. (1974): Determination of SH- and SS-groups in some food proteins using Ellman’s reagent. Journal of Food Science, 39: 49–51. https://doi.org/10.1111/j.1365-2621.1974.tb00984.x
Borde B., Bizot H., Vigier G., Buleon A. (2002): Calorimetric analysis of the structural relaxation in partially hydrated amorphous polysaccharides. I. Glass transition and fragility. Carbohydrate Polymers, 48: 83–96. https://doi.org/10.1016/S0144-8617(01)00217-X
Chen X., Schofield J.D. (1996): Changes in the glutathione content and bread-making performance of white wheat flour during shortterm storage. Cereal Chemistry, 73: 1–4.
Delcour J.A., Joye I.J., Pareyt B., Wilderjans E., Brijs K., Lagrain B. (2012): Wheat gluten functionality as a quality determinant in cereal-based food products. Annual Review of Food Science & Technology, 3: 469–492.
Gallagher E., Gormley T.R., Arendt E.K. (2003): Crust and crumb characteristics of gluten free breads. Journal of Food Engineering, 56: 153–161. https://doi.org/10.1016/S0260-8774(02)00244-3
Huang W., Li L., Feng W., Wan J., Michael T., Ren C., Wu S. (2010): Effects of transglutaminase on the rheological and Mixolab thermomechanical characteristics of oat dough. Food Chemistry, 121: 934–939. https://doi.org/10.1016/j.foodchem.2010.01.008
Jakubauskiene L., Juodeikiene G. (2005): the relationship between protein fractions of wheat gluten and the quality of ring-shaped rolls evaluated by the echolocation method. Food Technology & Biotechnology, 43: 247–253.
Tomić J., Pojić M., Torbica A.M., Rakita S., Zivancev D., Hajnal E.J., Hadnađev T.D., Hadnađev M. (2013): Changes in the content of free sulphydryl groups during postharvest wheat and flour maturation and their influence on technological quality. Journal of Cereal Science, 58: 495–501.
Johansson E., Malik A.H., Hussain A., Rasheed F., Newson W.R., Plivelic T., Hedenqvist M., Gällstedt M., Kuktaite R. (2013): Wheat gluten polymer structures: the impact of genotype, environment, and processing on their functionality in various applications. Cereal Chemistry, 90: 367–376. https://doi.org/10.1094/CCHEM-08-12-0105-FI
Kasprzak M., Rzedzicki Z. (2010): Effect of pea seed coat admixture on physical properties and chemical composition of bread. International Agrophysics, 24: 149–156.
Kuktaite R., Larsson H., Johansson E. (2004): Variation in protein composition of wheat flour and its relationship to dough mixing behaviour. Journal of Cereal Science, 40: 31–39. https://doi.org/10.1016/j.jcs.2004.04.007
Li C., Lu Q., Liu Z., Yan H. (2018): Effects of the addition of gluten with different disulfide bonds and sulfhydryl concentrations on Chinese white noodle quality. Czech Journal of Food Sciences, 36: 246–254. https://doi.org/10.17221/326/2017-CJFS
Li M., Zhang J., Zhu K., Wang P., Zhang S., Wang B., Zhu Y., Zhou H. (2012): Effect of superfine green tea powder on the thermodynamic, rheological and fresh noodle making properties of wheat flour. LWT – Food Science and Technology, 46: 23–28. https://doi.org/10.1016/j.lwt.2011.11.005
Lionetto F., Maffezzoli A., Ottenhof M., Farhat I.A., Mitchell J.R. (2010): the retrogradation of concentrated wheat starch systems. Starch-Stärke, 57: 16–24. https://doi.org/10.1002/star.200400298
Luo Y., Li M., Zhu K., Guo X., Wang P. (2016): Heat-induced interaction between egg white protein and wheat gluten. Food Chemistry, 197: 699–708. https://doi.org/10.1016/j.foodchem.2015.09.088
Marshall W.E., Normand F.L., Goynes W.R. (1990): Effects of lipid and protein removal on starch gelatinisation in whole grain milled rice. Cereal Chemistry, 67: 458–463.
Offia-Olua B.I. (2014): Chemical, functional and pasting properties of wheat (Triticumspp)-walnut (Juglansregia) flour. Food and Nutrition Sciences, 5: 1591–1604. https://doi.org/10.4236/fns.2014.516172
Olkku J., Rha C.K. (1978): Gelatinisation of starch and wheat-flour starch-review. Food Chemistry, 3: 293–317. https://doi.org/10.1016/0308-8146(78)90037-7
Ptaszek A., Berski W., Ptaszek P., Witczak T., Repelewicz U., Grzesik M. (2009): Viscoelastic properties of waxy maise starch and selected non-starch hydrocolloids gels. Carbohydrate Polymers, 76: 567–577. https://doi.org/10.1016/j.carbpol.2008.11.023
Qi L., Li W., Liu Z., Wang J., Che B., Yang W. (2017): Determination of content of antioxidant sodium sulfite in etimicin sulfate injection with ion chromatography. Chinese Pharmaceutical Journal, 52: 1792–1794. (in Chinese)
Rhazi L., Cazalis R., Aussenac T. (2003): Sulphydryl-disulfide changes in storage proteins of developing wheat grain: Influence on the SDS-unextractable glutenin polymer formation. Journal of Cereal Science, 38: 3–13. https://doi.org/10.1016/S0733-5210(03)00019-5
Rosell C.M., Collar C., Haros M. (2007): Assessment of hydrocolloid effects on the thermo-mechanical properties of wheat using the Mixolab. Food Hydrocolloids, 21: 452–462. https://doi.org/10.1016/j.foodhyd.2006.05.004
Sabanis D., Tzia C. (2010): Effect of rice, corn and soy flour addition on characteristics of bread produced from different wheat cultivars. Food & Bioprocess Technology, 2: 68–79.
Schmiele M., Felisberto M.H.F., Clerici M.T.P.S., Chang Y.K. (2016): Mixolab™ for rheological evaluation of wheat flour partially replaced by soy protein hydrolysate and fructooligosaccharides for bread production. LWT – Food Science and Technology, 73: 1–11.
Traynham T.L., Myers D.J., Carriquiry A.L., Johnson L.A. (2007): Evaluation of water-holding capacity for wheat-soy flour blends. Journal of the American Oil Chemists Society, 84: 151–155. https://doi.org/10.1007/s11746-006-1018-0
Uthayakumaran S., Wrigley C.W. (2010): Wheat: Characteristics and quality requirements. Cereal Grains, 12: 59–111.
Wang P., Chen H., Bashari M., Xu L., Ning Y., Xu J., Wu F., Na Y., Jin Z., Xu X. (2012): Effect of frozen storage on physico-chemistry of wheat gluten proteins: Studies on gluten-, glutenin- and gliadin-rich fractions. Food Hydrocolloids, 39: 187–194. https://doi.org/10.1016/j.foodhyd.2014.01.009
Wieser H. (2007): Chemistry of gluten proteins. Food Microbiology, 24: 115–119. https://doi.org/10.1016/j.fm.2006.07.004
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti