Antioxidant potential of tea assessed by optical absorption spectroscopy in DNA-encased carbon nanotubes

https://doi.org/10.17221/135/2020-CJFSCitation:

Wang L., Oura S., Wu Y. (2021): Antioxidant potential of tea assessed by optical absorption spectroscopy in DNA-encased carbon nanotubes. Czech J. Food Sci., 39: 23–28.

download PDF

It is essential to develop a simple method to assess food quality quantitatively. Available methods primarily rely on nanotechnology and offer high selectivity and sensitivity. In this study, we aimed to develop a sensitive nanoprobe, and, to this end, a double-stranded DNA-encased HiPco carbon nanotube (dsDNA-HiPco) hybrid was prepared and used to evaluate the antioxidant potential of a Chinese tea against hydrogen peroxide (H2O2) with a range of irradiation wavelengths. The morphology and dispersion of the hybrids were analysed using atomic force microscopy, which showed that dsDNA wrapped on the SWCNT surface well and homogeneous dispersion of the rod-shaped tubes while the concentration of dsDNA was 1 mg mL–1. The antioxidant effect of Chinese tea was evaluated by using near-infrared absorption and photoluminescence of the hybrid. Experimental results revealed that the tea exerted excellent antioxidant effects when the hybrid was pre-treated with 0.03% wt H2O2. Catechin present in the Chinese tea played a pivotal role in exerting the antioxidant effects. Therefore, a simple detection method proposed herein can be successfully applied in various fields, including biology, medicine, and the food industry.

References:
Blanch A.J., Shapter J.G. (2014): Surfactant concentration dependent spectral effects of oxygen and depletion interactions in sodium dodecyl sulfate dispersions of carbon nanotubes. The Journal of Physical Chemistry B, 118: 6288–6296. https://doi.org/10.1021/jp501230j
 
Boghossian A., Zhang J., Barone P.W., Reuel N.F., Kim J.H., Heller D.A., Ahn J.H., Hilmer A.J., Rwei A., Arkalgud J.R., Zhang C.T., Strano M.S. (2011): Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications. ChemSusChem (Chemistry-Sustainability-Energy-Materials), 4: 848–863. https://doi.org/10.1002/cssc.201100070
 
Chen J., Chen S., Zhao X., Kuznetsova L.V., Wong S.S., Ojima I. (2008): Functionalised single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. Journal of the American Chemical Society, 130: 16778–16785. https://doi.org/10.1021/ja805570f
 
Colon N., Nerin C. (2012): Role of catechins in the antioxidant capacity of an active film containing green tea, green coffee, and grapefruit extracts. Journal of Agricultural and Food Chemistry, 60: 9842–9849. https://doi.org/10.1021/jf302477y
 
Elhissi A.M., Ahmed W., Hassan I.U., Dhanak V.R., D’Emanuele A. (2012): Carbon nanotubes in cancer therapy and drug delivery. Journal of Drug Delivery, 2012: 837327.
 
Fu D., Li L.J. (2010): Label-free electrical detection of DNA hybridisation using carbon nanotubes and grapheme. Nano Reviews, 1: 5354.
 
Ishibashi Y., Ito M., Homma Y., Umemura K. (2018): Monitoring the antioxidant effects of catechin using single-walled carbon nanotubes: Comparative analysis by near-infrared absorption and near-infrared photoluminescence. Colloids and Surfaces: B Biointerfaces, 161: 139–146. https://doi.org/10.1016/j.colsurfb.2017.10.055
 
Kim S.N., Kuang Z., Grote J.G., Farmer B.L., Naik R.R. (2008): Enrichment of (6, 5) single wall carbon nanotubes using genomic DNA. Nano Letters, 8: 4415–4420. https://doi.org/10.1021/nl802332v
 
Koh B., Park J.B., Hou X., Cheng W. (2011): Comparative dispersion studies of single-walled carbon nanotubes in aqueous solution. The Journal of Physical Chemistry B, 115: 2627–2633. https://doi.org/10.1021/jp110376h
 
Kurnosov N.V., Karachevtsev M.V., Leontiev V.S., Karachevtsev V.A., (2017): Tuning the carbon nanotube photoluminescence enhancement at addition of cysteine through the change of external conditions. Materials Chemistry and Physics, 186: 131–137. https://doi.org/10.1016/j.matchemphys.2016.10.038
 
Lei J., Ju H. (2010): Nanotubes in biosensing. WIREs Nanomedicine and Nanobiotechnology, 2: 496–509. https://doi.org/10.1002/wnan.94
 
Tu X., Pehrsson P.E., Zhao W. (2007): Redox reaction of DNA-encased HiPco carbon nanotubes with hydrogen peroxide: A near infrared optical sensitivity and kinetics study. The Journal of Physical Chemistry C, 111: 17227–17231.
 
Wang L.J., Umemura K. (2019): Optical absorption spectroscopy of DNA-wrapped HiPco carbon nanotubes. Materials Science Forum, 943: 95–99. https://doi.org/10.4028/www.scientific.net/MSF.943.95
 
Weisman R.B., Bachilo S.M. (2003): Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Letters, 3: 1235–1238. https://doi.org/10.1021/nl034428i
 
Xu Y., Pehrsson P.E., Chen L., Zhang R., Zhao W. (2017): Double-stranded DNA single-walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing. The Journal Physical Chemistry C, 111: 8638–8643.
 
Yum K., Mcnicholas T.P., Mu B., Strano M.S. (2013): Single-walled carbon nanotube-based near-infrared optical glucose sensors toward in vivo continuous glucose monitoring. Journal of Diabetes Science and Technology, 7: 72–87. https://doi.org/10.1177/193229681300700109
 
Zhao E.H., Ergul B., Zhao W. (2015): Caffeine’s antioxidant potency optically sensed with double-stranded DNA-encased single-walled carbon nanotubes. The Journal of Physical Chemistry B, 119: 4068–4075. https://doi.org/10.1021/acs.jpcb.5b00708
 
Zheng M., Jagota A., Strano M.S., Santos A.P., Barone P., Chou S.G., Diner B.A., Dresselhaus M.S., Mclean R.S., Onoa G.B., Samsonidze G.G., Semke E.D., Usrey M., Walls D.J. (2003): Structure based carbon nanotube sorting by sequence-dependent DNA assembly. Science, 302: 1545–1548. https://doi.org/10.1126/science.1091911
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti