Comparison of innovative and non-invasive methods in estimating the fat content in pork trimmings

https://doi.org/10.17221/137/2016-CJFSCitation:Dasieiwcz K., Chmiel M., Słowiński M. (2017): Comparison of innovative and non-invasive methods in estimating the fat content in pork trimmings. Czech J. Food Sci., 35: 208-213.
download PDF
The purpose of research was to determine a possibility of application of computer vision systems (CVS) for estimation of fat content in pork trimmings in comparison with methods based on DXR (dual energy X-ray) and NIR (near-infrared reflectance spectroscopy). Research was conducted on 232 samples of pork trimmings. In order to verify the fat content determined by CVS, DXR, and NIR methods, fat content was also determined by the Soxhlet reference method. It was found that CVS can be used to estimate fat content in pork trimmings with a standard error of prediction between 4.9 and 5.6%. In order to achieve higher efficiency, it seems advisable to grind and standardise meat in a meat grinder with a kidney shaped plate.
References:
AOAC (2000): Official methods of analysis of AOAC International. 17th Ed., Gaithersburg, USA, Association of Analytical Communities.
 
Brienne J.P, Denoyelle C, Baussart H, Daudin J.D (2001): Assessment of meat fat content using dual energy X-ray absorption. Meat Science, 57, 235-244 https://doi.org/10.1016/S0309-1740(00)00091-7
 
CARNE 2.2. (2008): Instructions. Division of Meat Technology, Warsaw University of Life Sciences – SGGW, Poland.
 
Chmiel M., Słowiński M., Dasiewicz K. (2011a): Application of computer vision systems for estimation of fat content in poultry meat. Food Control, 22: 1424–1427.
 
Chmiel M., Słowiński M., Dasiewicz K. (2011b): Lightness of the color measured by computer image analysis as a factor for assessing the quality of pork meat. Meat Science, 88: 566–570.
 
Chmiel M., Słowiński M. (2013): Zastosowanie komputerowej analizy obrazu w technologii mięsa. Medycyna Weterynaryjna-Veterinary Medicine-Science and Practice, 69: 670–674.
 
Dasiewicz K., Pisula A., Słowiński M., Noga A. (2008): Wpływ wymiany tłuszczu zwierzęcego tłuszczem roślinnym i błonnikiem pokarmowym na jakość farszów i kiełbas drobno rozdrobnionych. Żywność. Nauka. Technologia. Jakość, 59: 52–60.
 
Dasiewicz K., Słowiński M., Pisula A., Chmiel M. (2010): The influence of mixing process pork trimmings on property of estimating the fat content by computer image analysis. Zeszyty Problemowe Postępów Nauk Rolniczych, 552: 47–55.
 
Gaitán-Jurado A.J., Ortiz-Somovilla V., España-España F., Pérez-Aparicio J., De Pedro-Sanz E.J. (2008): Quantitative analysis of pork dry-cured sausages to quality control by NIR spectroscopy. Meat Science, 78, 391-399 https://doi.org/10.1016/j.meatsci.2007.07.005
 
Girolami Antonio, Napolitano Fabio, Faraone Daniela, Braghieri Ada (2013): Measurement of meat color using a computer vision system. Meat Science, 93, 111-118 https://doi.org/10.1016/j.meatsci.2012.08.010
 
Hansen P.W., Tholl I., Christensen C., Jehg H.-C., Borg J., Nielsen O., Østergaard B., Nygaard J., Andersen O. (2003): Batch accuracy of on-line fat determination. Meat Science, 64, 141-147 https://doi.org/10.1016/S0309-1740(02)00169-9
 
Jackman Patrick, Sun Da-Wen, Allen Paul (2009): Automatic segmentation of beef longissimus dorsi muscle and marbling by an adaptable algorithm. Meat Science, 83, 187-194 https://doi.org/10.1016/j.meatsci.2009.03.010
 
Jackman Patrick, Sun Da-Wen, Allen Paul (2010): Prediction of beef palatability from colour, marbling and surface texture features of longissimus dorsi. Journal of Food Engineering, 96, 151-165 https://doi.org/10.1016/j.jfoodeng.2009.07.006
 
Mollah Md. Bazlur R., Hasan Md. A., Salam Md. A., Ali Md. A. (2010): Digital image analysis to estimate the live weight of broiler. Computers and Electronics in Agriculture, 72, 48-52 https://doi.org/10.1016/j.compag.2010.02.002
 
Pabiou T., Fikse W.F., Cromie A.R., Keane M.G., Näsholm A., Berry D.P. (2011): Use of digital images to predict carcass cut yields in cattle. Livestock Science, 137, 130-140 https://doi.org/10.1016/j.livsci.2010.10.012
 
Rius-Vilarrasa E., Bünger L., Maltin C., Matthews K.R., Roehe R. (2009): Evaluation of Video Image Analysis (VIA) technology to predict meat yield of sheep carcasses on-line under UK abattoir conditions. Meat Science, 82, 94-100 https://doi.org/10.1016/j.meatsci.2008.12.009
 
Sadkowski T., Ciecierska A., Majewska A., Oprządek J., Dasiewicz K., Ollik M., Wicik Z., Motyl T. (2014): Transcriptional background of beef marbling — Novel genes implicated in intramuscular fat deposition. Meat Science, 97, 32-41 https://doi.org/10.1016/j.meatsci.2013.12.017
 
Savenije B., Geesink G.H., van der Palen J.G.P., Hemke G. (2006): Prediction of pork quality using visible/near-infrared reflectance spectroscopy. Meat Science, 73, 181-184 https://doi.org/10.1016/j.meatsci.2005.11.006
 
Valous Nektarios A., Mendoza Fernando, Sun Da-Wen, Allen Paul (2009): Colour calibration of a laboratory computer vision system for quality evaluation of pre-sliced hams. Meat Science, 81, 132-141 https://doi.org/10.1016/j.meatsci.2008.07.009
 
Wold J.P., O'Farrell M., Høy M., Tschudi J. (2011): On-line determination and control of fat content in batches of beef trimmings by NIR imaging spectroscopy. Meat Science, 89, 317-324 https://doi.org/10.1016/j.meatsci.2011.05.001
 
Zheng Chaoxin, Sun Da-Wen, Zheng Liyun (2006): Recent developments and applications of image features for food quality evaluation and inspection – a review. Trends in Food Science & Technology, 17, 642-655 https://doi.org/10.1016/j.tifs.2006.06.005
 
download PDF

© 2019 Czech Academy of Agricultural Sciences