Dragon fruit: A review of health benefits and nutrients and its sustainable development under climate changes in Vietnam


Luu T.T.H., Le T.L., Huynh N., Quintela-Alonso P. (2021): Dragon fruit: A review of health benefits and nutrients and its sustainable development under climate changes in Vietnam. Czech J. Food Sci., 39: 71–94.

download PDF

Dragon fruit or pitaya is an exotic tropical plant that brings multiple benefits to human health thanks to its high nutritional value and bioactive compounds, including powerful natural antioxidants. Extracts from stems, flowers, peels, pulps of dragon fruit own a range of beneficial biological activities against pathogenic microbes including bacteria, fungi and viruses, and diseases like diabetes, obesity, hyperlipidaemia, and cancer. Moreover, dragon fruit extracts have cardiovascular and hepatoprotective properties, as well as prebiotic potential. Vietnam is a tropical country with favourable climate conditions for the development of pitaya plantations, which have great adaptability and tolerance to a wide range of environmental conditions (e.g. salinity adaptation, favour light intensity, drought resistance, etc.). The dragon fruit, thanks to its nutritional properties, biological activities, and commercial value has become a cost-effective product for the Vietnamese economy, particularly in the poorest areas of the Mekong Delta region, and a driving force in the sustainable development of Vietnam under the challenges posed by the global climate change such as saline intrusion and drought.

Abd Hadi N., Mohamad M., Rohin M.A.K., Yusof R.M. (2012): Effects of red pitaya fruit (Hylocereus polyrhizus) consumption on blood glucose level and lipid profile in type 2 diabetic subjects. Borneo Science: 31.
Abd Manan E., Abd Gani S.S., Zaidan U.H., Halmi M.I.E. (2019): Characterization of antioxidant activities in red dragon fruit (Hylocereus polyrhizus) pulp water-based extract. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 61: 170–180.
Adinortey M.B., Agbeko R., Boison D., Ekloh W., Kuatsienu L.E., Biney E.E., Affum O.O., Kwarteng J., Nyarko A.K. (2019): Phytomedicines used for diabetes mellitus in Ghana: A systematic search and review of preclinical and clinical evidence. Evidence-Based Complementary and Alternative Medicine: 2019. https://doi.org/10.1155/2019/6021209
Afandi A., Lazim A.M., Azwanida N.N., Bakar M.A., Airianah O.B., Fazry S. (2017): Antibacterial properties of crude aqueous Hylocereus polyrhizus peel extracts in lipstick formulation against gram-positive and negative bacteria. Malaysian Applied Biology, 46: 29–34.
Ahmed D., Khan M.M., Saeed R. (2015): Comparative analysis of phenolics, flavonoids, and antioxidant and antibacterial potential of methanolic, hexanic and aqueous extracts from Adiantum caudatum leaves. Antioxidants, 4: 394–409. https://doi.org/10.3390/antiox4020394
American Diabetes Association (2009): Diagnosis and Classification of Diabetes Mellitus. Diabetes care, 37 (Supplement 1): S62–S67. https://doi.org/10.2337/dc09-S062
Anderson E.F. (2001): The cactus family. Timber Press: 377–381.
Ariffin A.A., Bakar J., Tan C.P., Rahman R.A., Karim R., Loi C.C. (2009): Essential fatty acids of pitaya (dragon fruit) seed oil. Food Chemistry, 114: 561–564. https://doi.org/10.1016/j.foodchem.2008.09.108
Bárcenas-Abogado P., Tijerina-Chávez L., Martínez-Garza A., Becerril-Román A.E., Larqué-Saavedra A., Colinas de León M.T. (2002): Response of three Hylocereus materials exposed to chloride-sulfate salinity (Respuesta de tres materiales del genero Hylocereus a la salinidad sulfatico-clorhídrica. Terra, 20: 123–127. (in Spanish, English abstract)
Benzie I.F., Strain J.J. (1996): The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Analytical Biochemistry, 239: 70–76. https://doi.org/10.1006/abio.1996.0292
Berchtold F., Presl J.S. (1820): About the nature of plants (O přirozenosti rostlin). Krala Wiljma Endersa: 239. (in Czech)
Bertoncelj J., Doberšek U., Jamnik M., Golob T. (2007): Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chemistry, 105: 822–828. https://doi.org/10.1016/j.foodchem.2007.01.060
Beynen A.C., Katan M.B. (1985): Why do polyunsaturated fatty acids lower serum cholesterol? The American Journal of Clinical Nutrition, 42: 560–563.
Binh-Nguyen (2020): The miracle of growing dragon fruit in mangrove area. Baocantho. Available at https://baocantho.com.vn/ky-tich-trong-thanh-long-trong-nuoc-man-a117793.html (accessed Mar 20, 2020). (in Vietnamese)
Blancke R. (2016): Tropical fruits and other edible plants of the world: An illustrated guide. Cornell University Press: 128– 129.
Brand-Williams W., Cuvelier M.E., Berset C.L.W.T. (1995): Use of a free radical method to evaluate antioxidant activity. LWT – Food science and Technology, 28: 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
Britton N.L. (1918): Flora of Bermuda. Charles Scribner’s Sons, New York: 256. Available at https://www.biodiversitylibrary.org/item/16209#page/276/mode/1up (accessed Feb 3, 2021).
Britton N.L., Rose J.N. (1909): The genus Cereus and its allies in North America. Contributions from the United States National Herbarium, 12: 413– 437. Available at http://www.jstor.org/stable/23491827 (accessed Feb 3, 2021).
Britton N.L., Rose J.N. (1920): The Cactaceae. Descriptions and Illustrations of Plants of the Cactus Family. USA, Carnegie Institution of Washington, Vol. II: 183–195.
Buxbaum F. (1958): The phylogenetic division of the subfamily Cereoideae, Cactaceae. Madroño, 14: 177–206.
Cauilan P. L. (2019): Hepatoprotective potential of Hylocereus polyrhizus (dragon fruit) on carbon tetrachloride induced hepatic damages in albino wistar rats. International Journal of Sciences: Basic and Applied Research (IJSBAR), 46: 49–61.
Cavalcante Ĩ.H.L., Beckmann M.Z., Martins A.B.G., Galbiatti J.A., Cavalcante L.F. (2008): Water salinity and initial development of pitaya (Hylocereus undatus). International Journal of Fruit Science, 7: 81–92. https://doi.org/10.1300/J492v07n03_08
CBI (2019): Exporting fresh exotic tropical fruit to Europe. (An updated survey). The Centre for the Promotion of Imports, Ministry of Foreign Affair. Available at https://www.cbi.eu/node/1890/pdf/ (accessed Mar 25, 2020).
Chanda S., Baravalia Y., Kaneria M., Rakholiya K. (2010): Fruit and vegetable peels – Strong natural source of antimicrobics. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology: 444–450.
Chang Y.J., Pong L.Y., Hassan S.S., Choo W.S. (2020): Antiviral activity of betacyanins from red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius) against dengue virus type 2 (GenBank accession No. MH488959). Access Microbiology, 2: e000073. https://doi.org/10.1099/acmi.0.000073
Choo W.S., Yong W.K. (2011): Antioxidant properties of two species of Hylocereus fruits. Advances in Applied Science Research, 2: 418–425.
Choo J.C., Koh R.Y., Ling A.P.K. (2016): Medicinal properties of pitaya: A review. Spatula DD, 6: 69–76. https://doi.org/10.5455/spatula.20160413015353
Crane J.H., Balerdi F.C., Maguire I. (2017): Pitaya growing in the home landscape. Horticultural Sciences Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Available at https://edis.ifas.ufl.edu/pdffiles/HS/HS30300.pdf (accessed Feb 5, 2020).
Cronquist A., Takhtajan A., Zimmermann W. (1966): On the higher taxa of Embryobionta. Taxon, 15: 129–134. https://doi.org/10.2307/1217531
Eldeen I.M.S., Foong S.Y., Ismail N., Wong K.C. (2020): Regulation of pro-inflammatory enzymes by the dragon fruits from Hylocereus undatus (Haworth) and squalene – Its major volatile constituents. Pharmacognosy Magazine, 16: 81–86. https://doi.org/10.4103/pm.pm_271_19
Eastham J., Mpelasoka F., Mainuddin M., Ticehurst C., Dyce P., Hodgson G., Ali R., Kirby M. (2008): Mekong River Basin Water Resources Assessment: Impacts of Climate Change. A report. CSIRO: iv–xiv.
Esquivel P., Stintzing F.C., Carle R. (2007): Phenolic compound profiles and their corresponding antioxidant capacity of purple pitaya (Hylocereus sp.) genotypes. Zeitschrift für Naturforschung C, 62: 636–644. https://doi.org/10.1515/znc-2007-9-1003
Fadipe L.A., Haruna K., Mohammed I., Ibikune G.F. (2013): Phytochemical and in-vitro antibacterial evaluation of the extracts, portions and sub-portions of the ripe and unripe fruits of Nauclea latifolia. Journal of Medicinal Plants Research, 7: 629–636.
Folin O., Ciocalteu V. (1927): On tyrosine and tryptophane determinations in proteins. Journal of Biological Chemistry, 73: 627–650. https://doi.org/10.1016/S0021-9258(18)84277-6
Gan J., Feng Y., He Z., Li X., Zhang H. (2017): Correlations between antioxidant activity and alkaloids and phenols of maca (Lepidium meyenii). Journal of Food Quality: 3185945. https://doi.org/10.1155/2017/3185945
García-Mateos R., Pérez-Leal R. (2003): Phytoalexins: A plant defense mechanism (Fitoalexinas: Mecanismos de defensa de las plantas.) Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 9: 5–10. (in Spanish)
Gibson G.R., Probert H.M., Loo J.V., Rastall R.A., Roberfroid M.B. (2004): Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutrition research reviews, 17: 259–75. https://doi.org/10.1079/NRR200479
Glick N.R., Fischer M.H. (2013): The role of essential fatty acids in human health. Journal of Evidence-Based Complementary & Alternative Medicine, 18: 268–289.
Guimarães D.D.A.B., De Castro D.D.S.B., Oliveira F.L.D., Nogueira E.M., Silva M.A.M.D., Teodoro A.J. (2017): Pitaya extracts induce growth inhibition and proapoptotic effects on human cell lines of breast cancer via downregulation of estrogen receptor gene expression. Oxidative Medicine and Cellular Longevity, ID 7865073. https://doi.org/10.1155/2017/7865073
Guo N., Ling G., Liang X., Jin J., Fan J., Qiu J., Song Y., Huang N., Wu X., Wang X. (2011): In vitro synergy of pseudolaric acid b and fluconazole against clinical isolates of Candida albicans. Mycoses, 54: e400–e406. https://doi.org/10.1111/j.1439-0507.2010.01935.x
Haeckel E. (1866): General morphology of organisms: General principles of the science of organic forms, mechanically founded by the descent theory reformed by Charles Darwin (Generelle morphologie der organismen: allgemeine grundzüge der organischen formen-wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte descendenz-theorie). Berlin, Germany, Georg Reimer: 191–238. (in German)
Hammer K., Carson C.F., Riley T.V. (2003): Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. Journal of Applied Microbiology, 95: 853–860. https://doi.org/10.1046/j.1365-2672.2003.02059.x
Harahap N.S., Amelia R. (2019): Red dragon fruit (Hylocereus polyrhizus) extract decreases lactic acid level and creatine kinase activity in rats receiving heavy physical exercise. Open access Macedonian Journal of Medical Sciences, 7: 2232–2235. https://doi.org/10.3889/oamjms.2019.626
Hernández-Alvarado J., Zaragoza-Bastida A., López-Rodríguez G., Peláez-Acero A., Olmedo-Juárez A., Rivero-Perez N. (2018): Antibacterial and antihelmintic activity of plant secondary metabolites: Approach in veterinary medicine (Actividad antibacteriana y sobre nematodos gastrointestinales de metabolitos secundarios vegetales: Enfoque en Medicina Veterinaria.) Abanico Veterinario, 8: 14–27. (in Spanish)
Hernawati S., Setiawan N.A., Shintawati R., Priyandoko D. (2018): The role of red dragon fruit peel (Hylocereus polyrhizus) to improvement blood lipid levels of hyperlipidaemia male mice. Journal of Physics: Conference Series, 1013.
Hien P.T.T. (2019): The Dragon fruit export challenge and experiences in Vietnam. FFTC Agricultural Policy Platform. Available at http://ap.fftc.agnet.org/ap_db.php?id=1038 (accessed Mar 20, 2020).
Hoat T.X., Quan V.M., Hien N.T.T., Ngoc N.T.B., Minh H., Thanh N.V.L. (2018): Dragon Fruit production in Vietnam: Achievements and challenges. FFTC Agricultural Policy Platform. Available at http://ap.fftc.agnet.org/ap_db.php?id=873 (accessed March 20, 2020).
Ismail O.M., Abdel-Aziz M.S., Ghareeb M.A., Hassan R.Y. (2017): Exploring the biological activities of the Hylocereus polyrhizus extract. Journal of Innovations in Pharmaceutical and Biological Sciences, 4: 1–6.
Iwu M.W., Duncan A., Okunji C.O. (1999): New antimicrobials of plant origin. In: Janick J. (ed.): Perspectives on New Crops and New Uses. ASHS Press: Alexandria, VA, USA: 457–462.
Jackman R.L., Smith J.L. (1996): Anthocyanins and betalains. In: Hendry G.E.F., Houghton J.D. (eds): Natural Food Colorants. 2nd Ed. Chapman and Hall, London, Unated Kingdom: 286–288.
Jenkins D.J., Kendall C.W., Marchie A., Parker T., Connelly P.W., Qian W., Haight J.S., Faulkner D., Vidgen E., Lapsley K.G., Spiller G.A. (2002): Dose response of almonds on coronary heart disease risk factors: Blood lipids, oxidized low density lipoproteins, lipoprotein(a), homocysteine, and pulmonary nitricoxide. A randomized, controlled, crossover trial. Circulation, 106: 1327–1332. https://doi.org/10.1161/01.CIR.0000028421.91733.20
Jerônimo M.C., Orsine J.V.C., Borges K.K., Novaes M.R.C.G. (2015): Chemical and physical-chemical properties, antioxidant activity and fatty acids profile of red pitaya [Hylocereus undatus (Haw.) Britton & Rose] grown in Brazil. Journal of Drug Metabolism and Toxicology, 6: 1–6.
Jussieu de A.L. (1789): Genera plantarum. Parisiis, 15: 312–317.
Jiang Y.L., Liao Y.Y., Lin M.T., Yang W.J. (2016): Bud development in response to night-breaking treatment in the noninductive period in red pitaya (Hylocereus sp.). HortScience, 51: 690–696. https://doi.org/10.21273/HORTSCI.51.6.690
Jiang Y.L., Liao Y.Y., Lin T.S., Lee C.L., Yen C.R., Yang W.J. (2012): The photoperiod-regulated bud formation of red pitaya (Hylocereus sp.). HortScience, 47: 1063–1067. https://doi.org/10.21273/HORTSCI.47.8.1063
Juliastuti W.S., Budi H.S., Maharani C.A. (2020): Effect of dragon fruit (Hylocereus polyrhizus) peel extract on collagen fiber density of rat socket healing. Indian Journal of Public Health Research & Development, 11: 1682–1686.
Kanchana P., Devi S.K.S.V., Latha P.P., Spurthi N. (2018): Phytochemical evaluation and pharmacological screening of antiparkinson’s and laxative activities of Hylocereus undatus (White Pitaya) in rodents. IOSR Journal of Pharmacy, 8: 78–92.
Khalili M.A., Abdullah A.B., Abdul M.A. (2012): Antibacterial activity of flesh and peel methanol fractions of red pitaya, white pitaya and papaya on selected food microorganism. Int. Journal of Pharmacy and Pharmaceutical Science, 4: 185–190.
Khuituan P., Sakena K., Bannob K., Hayeeawaema F., Peerakietkhajorn S., Tipbunjong C., Wichienchot S., Charoenphandh N. (2019): Prebiotic oligosaccharides from dragon fruits alter gut motility in mice. Biomedicine & Pharmacotherapy: 114.
Kooti W., Farokhipour M., Asadzadeh Z., Ashtary-Larky D., Asadi-Samani M. (2016): The role of medicinal plants in the treatment of diabetes: A systematic review. Electronic physician, 8: 1832–1842. https://doi.org/10.19082/1832
Luo H., Cai Y., Peng Z., Liu T., Yang S. (2014): Chemical composition and in vitro evaluation of the cytotoxic and antioxidant activities of supercritical carbon dioxide extracts of pitaya (dragon fruit) peel. Chemistry Central Journal: 8.
Mahattanatawee K., Manthey J.A., Luzio G., Talcott S.T., Goodner K., Baldwin E.A. (2006): Total antioxidant activity and fiber content of select florida-grown tropical fruits. Journal of Agricultural and Food Chemistry, 54: 7355–7363. https://doi.org/10.1021/jf060566s
Mahdi M.A., Mohammed M.T., Jassim A.M.N., Mohammed A.I. (2018): Phytochemical content and anti-oxidant activity of Hylocereus undatus and study of toxicity and the ability of wound treatment. Plant Archives, 18: 2672–2680.
Majhenič L., Škerget M., Knez Ž. (2007): Antioxidant and antimicrobial activity of guarana seed extracts. Food Chemistry, 104: 1258–1268. https://doi.org/10.1016/j.foodchem.2007.01.074
Mback M.N., Agnaniet H., Nguimatsia F., Dongmo P.-M.J., Fokou J.-B.H., Bakarnga-Via I., Boyom F.F., Menut C. (2016): Optimization of antifungal activity of Aeollanthus heliotropioides oliv essential oil and time kill kinetic assay. Journal de Mycologie Médicale/Journal of Medical Mycology, 26: 233–243. https://doi.org/10.1016/j.mycmed.2016.04.003
Mercado-Silva E. M. (2018): Pitaya - Hylocereus undatus (Haw). In: Rodrigues S., de Oliveira Silva E., de Brito E.S. (eds): Exotic Fruits Reference Guide. 1st Ed. Academic Press: 339–349.
Mickymaray S. (2019): Efficacy and mechanism of traditional medicinal plants and bioactive compounds against clinically important pathogens. Antibiotics, 8: 257. https://doi.org/10.3390/antibiotics8040257
Mizrahi Y., Nerd A., Nobel P.S. (1997): Cacti as crops. Horticultural Review, 18: 219–319.
Montes-Belmont R. (2009): Chemical diversity in plants against phytopathogenic fungi (Diversidad de compuestos químicos producidos por las plantas contra hongos fitopatógenos.) Revista Mexicana de Micología, 29: 73–82. (in Spanish)
Moo-Huchin V.M., Gonzalez-Aguilar G.A., Moo-Huchin M., Ortiz-Vazquez E., Cuevas-Glory L., Sauri-Duch E., Betancur-Ancona D. (2017): Carotenoid composition and antioxidant activity of extracts from tropical fruits. Chiang Mai Journal of Science, 44: 605–616.
Moran R.V. (1953): Selenicereus megalanthus (Schumann) Moran. Gentes Herbarum, 8: 325.
Morton J.F. (1987): Strawberry Pear. In: Morton J.F. (ed.): Fruits of Warm Climates. Miami, FL, USA, Morton: 347–348.
Müller K.O., Börger H. (1940): Experimental studies on the Phytophthora resistance of the potato (Experimentelle Untersuchungen über die Phytophthora-Resistenz der Kartoffel.) Biologischen Reichsanstalt für Land- und Forstwirtschaft, 23: 189–231. (in German)
Mulinacci N., Innocenti M. (2012): Anthocyanins and Betalains. In: Nollet L., Toldra F. (eds): Food Analysis by HPLC. 3rd Ed. CRC Press: 765–768.
Muniz J.P.D.O., Bomfim I.G.A., Corrêa M.C.D.M., Freitas B.M. (2019): Floral biology, pollination requirements and behavior of floral visitors in two species of pitaya. Revista Ciência Agronômica, 50: 640–649.
Naseer U., Hajera T., Ali M.N., Ponia K. (2012): Evaluation of antibacterial activity of five selected fruits on bacterial wound isolates. International Journal of Pharma and Bio Sciences, 3: 531–546.
Nie Q., Gao G.L., Fan Q., Qiao G., Wen X.P., Liu T., Cai Y.Q. (2015): Isolation and characterization of a catalase gene "HuCAT3" from pitaya (Hylocereus undatus) and its expression under abiotic stress. Gene, 563: 63–71. https://doi.org/10.1016/j.gene.2015.03.007
Nobel P. S., La Barrera E. (2004): CO2 uptake by the cultivated hemiepiphytic cactus, Hylocereus undatus. Annals of Applied Biology, 144: 1–8. https://doi.org/10.1111/j.1744-7348.2004.tb00310.x
Nurliyana R.D., Syed Zahir I., Mustapha Suleiman K., Aisyah M.R., Kamarul Rahim K. (2010): Antioxidant study of pulps and peels of dragon fruits: A comparative study. International Food Research Journal, 17: 367–375.
Nurmahani M.M., Osman A., Abdul Hamid A., Mohamad Ghazali F., Pak Dek M.S. (2012): Antibacterial property of Hylocereus polyrhizus and Hylocereus undatus peel extracts. International Food Research Journal, 19: 77–84.
Nyamai D.W., Arika W., Ogola P.E., Njag E.N.M., Ngugi M.P. (2016): Medicinally important phytochemicals: An untapped research avenue. Research and Reviews: Journal of Pharmacognosy and Phytochemistry, 4: 35–49.
Ocvirk S., Kistler M., Khan S., Talukder S.H., Hauner H. (2013): Traditional medicinal plants used for the treatment of diabetes in rural and urban areas of Dhaka, Bangladesh – An ethnobotanical survey. Journal of Ethnobiology and Ethnomedicine: 9.
Omidizadeh A., Yusof R.M., Ismail A., Roohinejad S., Nateghi L., Zuki M., Bakar A. (2011): Cardioprotective compounds of red pitaya (Hylocereus polyrhizus) fruit. Journal of Food, Agriculture & Environment, 9: 152–156.
Omidizadeh A., Yusof R.M., Roohinejad S., Ismail A., Bakar M.Z.A., Bekhit A.E.D.A. (2014): Anti-diabetic activity of red pitaya (Hylocereus polyrhizus) fruit. RSC Advances, 4: 62978–62986. https://doi.org/10.1039/C4RA10789F
Ortiz-Hernández Y.D., Carrillo-Salazar J.A. (2012): Pitahaya (Hylocereus spp.): A short review. Comunicata Scientiae, 3: 220–237.
Palace V.P., Khaper N., Qin Q., Singal P.K. (1999): Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radical Biology and Medicine, 26: 746–761. https://doi.org/10.1016/S0891-5849(98)00266-4
Pansai N., Chakree K., Takahashi Yupanqui C., Raungrut P., Yanyiam N., Wichienchot S. (2020): Gut microbiota modulation and immune boosting properties of prebiotic dragon fruit oligosaccharides. International Journal of Food Science & Technology, 55: 55–64.
Parmar M.Y., Sharma S., Singh T., Steven I., Pandya N., Pore D. (2019): Antioxidant and hepatoprotective potential of dragon fruit extract in opposition to acetaminophen-induce liver smash up in Rats. Advanced Research in Gastroenterology & Hepatology, 12: 88–94.
Paxton J.D. (1981): Phytoalexins – A working redefinition. Journal of Phytopathology, 101: 106–109.  https://doi.org/10.1111/j.1439-0434.1981.tb03327.x
Pehlivan F.E. (2017): Vitamin C: An antioxidant agent. In: Hamza A.H. (ed.): Vitamin C. IntechOpen: 23–35.
Perez G.R.M., Vargas S.R., Ortiz H.Y.D. (2005): Wound healing properties of Hylocereus undatus on diabetic rats. Phytotherapy Research, 19: 665–668. https://doi.org/10.1002/ptr.1724
Perween T., Mandal K.K., Hasan M.A. (2018): Dragon fruit: An exotic super future fruit of India. Journal of Pharmacognosy and Phytochemistry, 7: 1022–1026.
Piasecka A., Jedrzejczak-Rey N., Bednarek P. (2015): Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytologist, 206: 948–64. https://doi.org/10.1111/nph.13325
Pietta P.G. (2000): Flavonoids as antioxidants. Journal of Natural Products, 63: 1035–1042. https://doi.org/10.1021/np9904509
Pol T., Held C., Westerbergh J., Lindbäck J., Alexander J.H., Alings M., Erol C., Goto S., Halvorsen S., Huber K., Hanna M. (2018): Dyslipidemia and risk of cardiovascular events in patients with atrial fibrillation treated with Oral anticoagulation therapy: Insights from the ARISTOTLE (Apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation) trial. Journal of the American Heart Association, 7: e007444. https://doi.org/10.1161/JAHA.117.007444
Poolsup N., Suksomboon N., Paw N.J. (2017): Effect of dragon fruit on glycemic control in prediabetes and type 2 diabetes: A systematic review and meta-analysis. PloS one, 12: e0184577. https://doi.org/10.1371/journal.pone.0184577
Prieto P., Pineda M., Aguilar M. (1999): Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal Biochemistry, 269: 337–341. https://doi.org/10.1006/abio.1999.4019
Rahmawati B., Mahajoeno E. (2009): Variation of morphology, isozymic and vitamin C content of dragon fruit varieties. Nusantara bioscience, 1: 131–137.
Rahmawati M.A., Supriyana S., Djamil M. (2019): Potential effect of pitaya fruit juice (Hylocereus polyrhizus) as an anti-anemic agent for postpartum anemia. Indonesian Journal of Medicine, 4: 293–299. https://doi.org/10.26911/theijmed.2019.04.04.01
Ramli N.S., Rahmat A. (2014): Variability in nutritional composition and phytochemical properties of red pitaya (Hylocereus polyrhizus) from Malaysia and Australia. International Food Research Journal, 21: 1689–1697.
Ramli N.S., Brown L., Ismail P., Rahmat A. (2014a): Effects of red pitaya juice supplementation on cardiovascular and hepatic changes in high-carbohydrate, high-fat diet-induced metabolic syndrome rats. BMC complementary and alternative medicine: 14. https://doi.org/10.1186/1472-6882-14-189
Ramli N.S., Ismail P., Rahmat A. (2014b): Influence of conventional and ultrasonic-assisted extraction on phenolic contents, betacyanin contents, and antioxidant capacity of red dragon fruit (Hylocereus polyrhizus). The Scientific World Journal, 2014: e.964731. https://doi.org/10.1155/2014/964731
Ratnala Thulaja N., Abd Rahman N.A. (2017): Dragon Fruit. Singapore Infopedia. Available at https://eresources.nlb.gov.sg/infopedia/articles/SIP_768_2005-01-11.html (accessed Mar 20, 2020).
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. (1999): Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26: 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Reddy M.K., Alexander-Lindo R.L., Nair M.G. (2005): Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors. Journal of Agricultural and Food Chemistry, 53: 9268–73. https://doi.org/10.1021/jf051399j
Rice-Evans C.A., Miller N.J., Paganga G. (1997): Antioxidant properties of phenolic compounds. Trends in Plant Science, 2: 152–159. https://doi.org/10.1016/S1360-1385(97)01018-2
Rodriguez E.B., Vidallon M.L.P., Mendoza D.J.R., Reyes C.T. (2016): Health-promoting bioactivities of betalains from red dragon fruit (Hylocereus polyrhizus (Weber) Britton and Rose) peels as affected by carbohydrate encapsulation. Journal of the Science of Food and Agriculture, 96: 4679–89. https://doi.org/10.1002/jsfa.7681
Ruzainah A.J., Ahmad R., Nor Z., Vasudevan R. (2009): Proximate analysis of dragon fruit (Hylecereus polyhizus). American Journal of Applied Sciences, 6: 1341–46. https://doi.org/10.3844/ajassp.2009.1341.1346
San Miguel-Chávez R. (2017): Phenolic antioxidant capacity: A review of the state of the art. In: Soto-Hernández M., Palma-Tenango M., García-Mateos M.D.R. (eds): Phenolic Compounds-Biological Activity. IntechOpen. Available at https://www.intechopen.com/books/phenolic-compounds-biological-activity/phenolic-antioxidant-capacity-a-review-of-the-state-of-the-art (accessed Mar 4, 2020).
Schumann K. (1899): General description of the cacti (Monographia Cactacearum). [Gesamtbeschreibung der Kakteen (Monographia Cactacearum)]. Neudamm, Germany, Verlag von J. Neumann: 46. (in German)
Septembre-Malaterre A., Remize F., Poucheret P. (2018): Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Research International, 104: 86–99. https://doi.org/10.1016/j.foodres.2017.09.031
Sofowora A., Ogunbodede E., Onayade A. (2013): The role and place of medicinal plants in the strategies for disease prevention. African Journal of Traditional, Complementary and Alternative Medicines, 10: 210–229. https://doi.org/10.4314/ajtcam.v10i5.2
Som A.M., Ahmat N., Hamid H.A.A., Azizuddin N. (2019): A comparative study on foliage and peels of Hylocereus undatus (white dragon fruit) regarding their antioxidant activity and phenolic content. Heliyon, 5: e01244. https://doi.org/10.1016/j.heliyon.2019.e01244
Stankovic M.S., Niciforovic N., Topuzovic M., Solujic S. (2011): Total phenolic content, flavonoid concentrations and antioxidant activity, of the whole plant and plant parts extracts from Teucrium montanum L. var. montanum, f. supinum (L.) Reichenb. Biotechnology & Biotechnological Equipment, 25: 2222–2227.
Strack D., Vogt T., Schliemann W. (2003): Recent advances in betalain research. Phytochemistry, 62: 247–269. https://doi.org/10.1016/S0031-9422(02)00564-2
Suastuti N.G.M.A.D.A., Bogoriani N.W., Putra A.A.B. (2018): Activity of Hylocereus costarioensis extract as antiobesity and hypolipidemic of obese rats. International Journal of Pharmaceutical Research & Allied Sciences, 7: 201–208.
Sudha K., Baskaran D., Ramasamy D., Siddharth M. (2017): Evaluation of functional properties of Hylocereus undatus (White dragon fruit). International Journal of Agricultural Science and Research, 7: 451–456. https://doi.org/10.24247/ijasroct201753
Swarup K.R.A., Sattar M.A., Abdullah N.A., Abdulla M.H., Salman I.M., Rathore H.A., Johns E.J. (2010): Effect of dragon fruit extract on oxidative stress and aortic stiffness in streptozotocin-induced diabetes in rats. Pharmacognosy Research, 2: 31–35. https://doi.org/10.4103/0974-8490.60582
Tahera J., Feroz F., Senjuti J.D., Das K.K., Noor R. (2014): Demonstration of anti-bacterial activity of commonly available fruit extracts in Dhaka, Bangladesh. American Journal of Microbiological Research, 2: 68–73. https://doi.org/10.12691/ajmr-2-2-5
Takhtajan A.L. (1966): System of classification of Angiospermic plants (Sistema i filogenia tsvetkovykh rasteniy). Nauka, Moscow, Russia: 144–167. (in Russian)
Tel-Zur N., Abbo S., Bar-Zvi D., Mizrahi Y. (2004): Clone identification and genetic relationship among vine cacti from the genera Hylocereus and Selenicereus based on RAPD analysis. Scientia Horticulturae, 100: 279–289. https://doi.org/10.1016/j.scienta.2003.09.007
Tenore G.C., Novellino E., Basile A. (2012): Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. Journal of Functional Foods, 4: 129–136. https://doi.org/10.1016/j.jff.2011.09.003
The Asian Foundation (2019): Empowering Local Agricultural Producers with a Global Trading Identity. Program Synthesis Report. Available at https://asiafoundation.org/wp-content/uploads/2019/08/Empowering-Local-Agricultural-Producers-with-a-Global-Trading-Identity.pdf (accessed Mar 20, 2020).
Tsai Y., Lin C.G., Chen W.L., Huang Y.C., Chen C.Y., Huang K.F., Yang C.H. (2019): Evaluation of the antioxidant and wound-healing properties of extracts from different parts of Hylocereus polyrhizus. Agronomy: 9.
Umer A., Tekewe A., Kebede N. (2013): Antidiarrhoel and antimicrobial activity of Calpurnia aurea leaf extract. BMC Complementary and Alternative Medicine: 13.
US Forest Service (2011): Climate change in Vietnam: Assessment of issues and options for USAID funding. USAID. Available at https://www.usaid.gov/sites/default/files/documents/1861/vietnam_climate_change_final2011.pdf (accessed Jan 9, 2021).
Van Etten H.D., Bateman D.F. (1971): Studies on mode of action of phytoalexin phaseollin. Phytopathology, 61: 1363–1372. https://doi.org/10.1094/Phyto-61-1363
Velnar T., Bailey T., Smrkolj V. (2009): The wound healing process: An overview of the cellular and molecular mechanisms. Journal of International Medical Research, 37: 1528–1542. https://doi.org/10.1177/147323000903700531
Wang L., Zhang X., Ma Y., Qing Y., Wang H., Huang X. (2019): The highly drought-tolerant pitaya (Hylocereus undatus) is a non-facultative CAM plant under both well-watered and drought conditions. The Journal of Horticultural Science and Biotechnology, 94: 643–652. https://doi.org/10.1080/14620316.2019.1595747
Willkomm M. (1854): Instructions for the Study of Scientific Botany, Part Two) (Anleitung zum Studium der Wissenschaftlichen Botanik Zweiter Theil) Specille Botanik. Leipzig: F. Fleischer: 139–145. (in German)
Wichienchot S., Jatupornpipat M., Rastall R.A. (2010): Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chemistry, 120: 850–857. https://doi.org/10.1016/j.foodchem.2009.11.026
World Bank Group (1999): A synthesis of participatory poverty assessments from four sites in Vietnam: Lao Cai, Ha Tinh, Tra Vinh & Ho Chi Minh city. Ha Noi, Vietnam. Available at https://www.participatorymethods.org/sites/participatorymethods.org/files/Vietnam%20consultations%20with%20the%20poor.pdf (accessed Apr 17, 2021).
World Bank Group (2020): Climate Risk Country Profile: Vietnam. The World Bank Group and Asian Development Bank. Available at https://climateknowledgeportal.worldbank.org/sites/default/files/2020-09/15077-Vietnam%20Country%20Profile-WEB_1.pdf (accessed Jan 9, 2021).
Wu L.C., Hsu H.W., Chen Y.C., Chiu C.C., Lin Y.I., Ho J.A.A. (2006): Antioxidant and antiproliferative activities of red pitaya. Food Chemistry, 95: 319–327. https://doi.org/10.1016/j.foodchem.2005.01.002
Wu SJ., Ng LT. (2008): Antioxidant and free radical scavenging activities of wild bitter melon (Momordica charantia Linn. var. Abbreviate Ser.) in Taiwan. LWT – Food Science and Technology, 41: 323–330. https://doi.org/10.1016/j.lwt.2007.03.003
Wybraniec S., Nowak-Wydra B., Mitka K., Kowalski P., Mizrahi Y. (2007): Minor betalains in fruits of Hylocereus species. Phytochemistry, 68: 251–259. https://doi.org/10.1016/j.phytochem.2006.10.002
Young I.S., Woodside J. V. (2001): Antioxidants in health and disease. Journal of Clinical Pathology, 54: 176–186. https://doi.org/10.1136/jcp.54.3.176
Zain N.M., Nazeri M.A., Azman N.A. (2019): Assessment on bioactive compounds and the effect of microwave on Pitaya peel. Jurnal Teknologi: 81.
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti