Cornelian cherry liqueur is a traditional Polish alcoholic beverage. In the present study, two variants of the liqueur were prepared: one with fresh cornelian cherry (Cornus mas L.) fruits and the other with frozen fruits. The dry mass, total phenolic content and antioxidant potential were determined in the final products. The liqueurs prepared from frozen fruits had a higher antioxidant capacity and dry mass than the liqueurs produced traditionally. The freezing process resulted in no growth in the total phenolic content. Some other secondary metabolites other than the phenolic acids may have affected the difference in the antioxidant potential.
Adamenko K., Kawa-Rygielska J., Kucharska A., Piórecki N. (2018): Characteristics of biologically active compounds in cornelian cherry meads. Molecules, 23: 2024.
https://doi.org/10.3390/molecules23082024
Adamenko K., Kawa-Rygielska J., Kucharska A.Z., Piórecki N. (2019): Fruit low-alcoholic beverages with high contents of iridoids and phenolics from apple and cornelian cherry (Cornus mas L.) Polish Journal of Food and Nutrion Sciences, 69: 307–317.
https://doi.org/10.31883/pjfns/111405
Amarowicz R., Naczk M., Shahidi F. (2000): Antioxidant activity of various fractions of non-tannin phenolics of canola hulls. Journal of Agricultural and Food Chemistry, 48: 2755–2759.
https://doi.org/10.1021/jf9911601
Cheung L.M., Cheung P.C.K., Ooi V.E.C. (2003): Antioxidant activity and total phenolics of edible mushroom extracts. Food Chemistry, 81: 249–255.
https://doi.org/10.1016/S0308-8146(02)00419-3
Francik R., Kryczyk J., Krośiak M., Berköz M., Sanocka I., Francik S. (2014): The neuroprotective effect of Cornus mas on brain tissue of wistar rats. Scientific World Journal, 2014: 847368.
https://doi.org/10.1155/2014/847368
Johnson T.A., Sohn J., Inman W.D., Bjeldanes L.F., Rayburn K. (2013): Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders. Phytomedicine, 20: 143–147.
https://doi.org/10.1016/j.phymed.2012.09.016
Kawa-Rygielska J., Adamenko K., Kucharska A.Z., Piórecki N. (2018): Bioactive compounds in Cornelian cherry vinegars. Molecules, 23: 379.
https://doi.org/10.3390/molecules23020379
Kobus-Cisowska J., Szczepaniak O., Kmiecik D., Telichowska A., Dziedziński M., Brzozowska A., Ligaj M., Fedko M., Szymanowska D., Szulc P., Goryńska-Goldmann E. (2019): Impact of Salix viminalis carbon as a bioactive component: Developed a new proposal of application in functional bread. Journal of Research and Applications in Agricultural Engineering, 64: 25–30.
Kucharska A., Sokół-Łętowska A., Hudko J., Nawirska A. (2007): Influence of the preparation procedure on the antioxidant activity and colour of liqueurs from cornelian cherry (Cornus mas L.). Polish Journal of Food and Nutritional Sciences, 57: 343–347.
Kucharska A.Z., Szumny A., Sokól-Letowska A., Piórecki N., Klymenko S.V. (2015): Iridoids and anthocyanins in cornelian cherry (Cornus mas L.) cultivars. Journal of Food Composition and Analysis, 40: 95–102.
https://doi.org/10.1016/j.jfca.2014.12.016
Nenadis N., Wang L.F., Tsimidou M., Zhang H.Y. (2004): Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. Journal of Agricultural and Food Chemistry, 52: 4669–4674.
https://doi.org/10.1021/jf0400056
Pereira C.G., Barreira L., Bijttebier S., Pieters L., Marques C., Santos T.F., Rodrigues M.J., Custódio L. (2018): Health promoting potential of herbal teas and tinctures from Artemisia campestris subsp. maritima: From traditional remedies to prospective products. Scientific Reports, 8: 1–13.
https://doi.org/10.1038/s41598-018-23038-6
Olejar K.J., Fedrizzi B., Kilmartin P.A. (2015): Influence of harvesting technique and maceration process on aroma and phenolic attributes of Sauvignon blanc wine. Food Chemistry, 183: 181–189.
https://doi.org/10.1016/j.foodchem.2015.03.040
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. (1999): Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26: 1231–1237.
https://doi.org/10.1016/S0891-5849(98)00315-3
Sokół-Łętowska A., Kucharska A.Z., Wińska K., Szumny A., Nawirska-Olszańska A., Mizgier P., Wyspiańska D. (2014): Composition and antioxidant activity of red fruit liqueurs. Food Chemistry, 157: 533–539.
https://doi.org/10.1016/j.foodchem.2014.02.083
Świerczewska A., Buchholz T., Melzig M.F., Czerwińska M.E. (2019): In vitro α-amylase and pancreatic lipase inhibitory activity of Cornus mas L. and Cornus alba L. fruit extracts. Journal of Food and Drug Analysis, 27: 249–258.
https://doi.org/10.1016/j.jfda.2018.06.005
Szczepaniak O.M., Kobus-Cisowska J., Kusek W., Przeor M. (2019a): Functional properties of Cornelian cherry (Cornus mas L.): A comprehensive review. European Food Research and Technology, 245: 2071–2087.
https://doi.org/10.1007/s00217-019-03313-0
Szczepaniak O.M., Ligaj M., Kobus-Cisowska J., Maciejewska P., Tichoniuk M., Szulc P. (2019b): Application for novel electrochemical screening of antioxidant potential and phytochemicals in Cornus mas extracts. CyTA – the Journal of Food, 17: 781–789.
https://doi.org/10.1080/19476337.2019.1653378
Tang S., Kerry J., Sheehan D., Buckley D. (2002). Antioxidative mechanisms of tea catechins in chicken meat systems. Food Chemistry, 76: 45–51.
https://doi.org/10.1016/S0308-8146(01)00248-5
Villaño D., Fernández-Pachón M.S., Moyá M.L., Troncoso A.M., García-Parrilla M.C. (2007): Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta, 71: 230–235.
https://doi.org/10.1016/j.talanta.2006.03.050