Green biosynthesis of silver nanoparticles using Prunus cerasifera pissardii nigra leaf and their antimicrobial activities against some food pathogens

https://doi.org/10.17221/156/2021-CJFSCitation:

Hatipoğlu A. (2022): Green biosynthesis of silver nanoparticles using Prunus cerasifera pissardii nigra leaf and their antimicrobial activities against some food pathogens. Czech J. Food Sci., 40: 383–391.

download PDF

In this study, silver nanoparticles (AgNPs) were synthesised using the Prunus cerasifera pissardii nigra (PC) leaf extract in an easy, low-cost and environmentally friendly way. According to the ultraviolet-visible (UV-vis) spectrophotometer analysis data, the nanocrystals demonstrated a characteristic peak at 456 nm. Scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) spectroscopy analyses revealed that the morphological structures of the biosynthesised AgNPs were mostly spherical. According to the results of X-ray diffraction (XRD) analysis, it was determined that the crystal structures of AgNPs were cubic. The size of the nanoparticles was calculated as 23.60 nm using the Debye-Scherrer equation. The zeta potential of the synthesised nanomaterial was measured as –15.5 mV. The minimum inhibitory concentration (MIC) values of AgNPs on Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, Bacillus subtilis ATCC 11774, Pseudomonas aeruginosa ATCC 27853 and Candida albicans ATCC 10231 were determined to be 0.062, 0.250, 0.125, 0.500 and 0.125 µg mL–1, respectively.

References:
Acay H., Baran M.F., Eren A. (2019): Investigating antimicrobial activity of silver nanoparticles produced through green synthesis using leaf extract of common grape (Vitis vinifera). Applied Ecology and Environmental Research, 17: 4539–4546. https://doi.org/10.15666/aeer/1702_45394546
 
Agarwal H., Kumar S.V., Rajeshkumar S. (2018): Antidiabetic effect of silver nanoparticles synthesized using lemongrass (Cymbopogon citratus) through conventional heating and microwave irradiation approach. Journal of Microbiology, Biotechnology and Food Sciences, 7: 371–376. https://doi.org/10.15414/jmbfs.2018.7.4.371-376
 
Akintelu S.A., Folorunso A.S., Ademosun A.T. (2019): Instrumental characterization and antibacterial investigation of silver nanoparticles synthesized from Garcinia kola leaf. Journal of Drug Delivery and Therapeutics, 9: 58–64. https://doi.org/10.22270/jddt.v9i6-s.3749
 
Aktepe N. (2021): Synthesis, characterization and antimicrobial activities of silver nanomaterials. Dicle University Journal of Engineering, 12: 347–354.
 
Aktepe N., Baran A. (2021): Fast and low cost biosynthesis of AgNPs with almond leaves: Medical applications with biocompatible structures. Progress in Nutrition, 23: e2021271.
 
Alkhalaf M.I., Hussein R.H., Hamza A. (2020): Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi Journal of Biological Sciences, 27: 2410–2419. https://doi.org/10.1016/j.sjbs.2020.05.005
 
Bandeira M., Giovanela M., Roesch-Ely M., Devine D.M., Da Silva Crespo J. (2020): Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 15: 100223. https://doi.org/10.1016/j.scp.2020.100223
 
Baran A., Keskin C. (2020): Green Synthesis of Nanoparticles and Anti-Microbial Applications: Academic Studies in Science and Mathematics – II. Ankara, Turkey, Gece Kitaplığı: 1–18.
 
Baran M.F. (2019): Synthesis, characterization and investigation of antimicrobial activity of silver nanoparticles from Cydonia oblonga leaf. Applied Ecology and Environmental Research, 17: 2583–2592. https://doi.org/10.15666/aeer/1702_25832592
 
Becaro A.A., Jonsson C.M., Puti F.C., Siqueira M.C., Mattoso L.H.C., Correa D.S., Ferreira M.D. (2015): Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans. Environmental Nanotechnology, Monitoring & Management, 3: 22–29.
 
Chellamuthu C., Balakrishnan R., Patel P., Shanmuganathan R., Pugazhendhi A., Ponnuchamy K. (2019): Gold nanoparticles using red seaweed Gracilaria verrucosa: Green synthesis, characterization and biocompatibility studies. Process Biochemistry, 80: 58–63. https://doi.org/10.1016/j.procbio.2019.02.009
 
Eren A., Baran M.F. (2019a): Green synthesis, characterization and antimicrobal activity of silver nanoparticles (AgNPs) from maize (Zea mays L.). Applied Ecology and Environmental Research, 17: 4097–4105. https://doi.org/10.15666/aeer/1702_40974105
 
Eren A., Baran M.F. (2019b): Synthesis, characterization and investigation of antimicrobial activity of silver nanoparticles (AgNP) from pistachio (Pistacia vera L.) leaf. Turkish Journal of Agricultural Research, 6: 165–173.
 
Fatema S., Shirsat M., Farooqui M., Arif P.M. (2019): Biosynthesis of silver nanoparticle using aqueous extract of Saraca asoca leaves, its characterization and antimicrobial activity. International Journal of Nano Dimension, 10: 163–168.
 
Garibo D., Borbón-Nuñez H.A., De León J.N.D. (2020): Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Scientific Reports, 10: 12805. https://doi.org/10.1038/s41598-020-69606-7
 
Hatipoğlu A. (2021a): Rapid green synthesis of gold nanoparticles: Synthesis, characterization, and antimicrobial activities. Progress in Nutrition, 23: e2021242.
 
Hatipoğlu A. (2021b): Green synthesis of gold nanoparticles from Prunus cerasifera pissardii nigra leaf and their antimicrobial activities on some food pathogens. Progress in Nutrition, 23: e2021241.
 
Hatipoğlu A. (2022): Green synthesis of silver nanoparticles and their antimicrobial effects on some food pathogens. Süleyman Demirel University Journal of Natural and Applied Sciences, 26: 106–114.
 
Horvath A., Christmann H., Laigret F. (2008): Genetic diversity and relationships among Prunus cerasifera (cherry plum) clones. Botany, 86: 1311–1318. https://doi.org/10.1139/B08-097
 
Hoseinnejad M., Jafari S.M., Katouzian I. (2017): Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical Reviews in Microbiology, 44: 161–181. https://doi.org/10.1080/1040841X.2017.1332001
 
Huang X., Wang R., Jiao T., Zou G., Zhan F., Yin J., Zhang L., Zhou J., Peng Q. (2019): Facile preparation of hierarchical AgNP-loaded MXene/Fe3O4/polymer nanocomposites by electrospinning with enhanced catalytic performance for wastewater treatment. ACS Omega, 4: 1897–1906. https://doi.org/10.1021/acsomega.8b03615
 
Hussain I., Singh N.B., Singh A., Singh H., Singh S.C. (2016): Green synthesis of nanoparticles and its potential application. Biotechnology Letters, 38: 545–560. https://doi.org/10.1007/s10529-015-2026-7
 
Iravani S., Korbekandi H., Mirmohammadi S.V., Zolfaghari B. (2014): Synthesis of silver nanoparticles: Chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9: 385–406.
 
Jebril S., Jenana R.K.B., Dridi C. (2020): Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: In vitro and in vivo. Materials Chemistry and Physics, 248: 122898. https://doi.org/10.1016/j.matchemphys.2020.122898
 
Kalyoncu I.H., Ersoy N., Karali M.E. (2016): Application effects of humidity and different hormone doses on the rooting of Prunus cerasifera pissardii nigra softwood top cuttings. Selcuk Journal of Agriculture and Food Sciences, 30: 74–78.
 
Kedi P., Meva F.E., Kotsedi L., Nguemfo E.L., Zangueu C.B., Ntoumba A.A., Mohamed H., Dongmo A.B., Maaza M. (2018): Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. International Journal of Nanomedicine, 13: 8537–8548. https://doi.org/10.2147/IJN.S174530
 
Keskin C., Baran A., Baran M.F., Hatipoğlu A., Adican M.T., Atalar M.N., Huseynova I., Khalilov R., Ahmadian E., Yavuz Ö., İrtegün Kandemir S., Eftekhari A. (2022): Green synthesis, characterization of gold nanomaterials using Gundelia tournefortii leaf extract, and determination of their nanomedicinal (antibacterial, antifungal, and cytotoxic) potential. Journal of Nanomaterials, 2022: 1–10. https://doi.org/10.1155/2022/7211066
 
Kowsalya E., Mosachristas K., Balashanmugam P., Manivasagan V., Devasena T., Jaquline C.R.I. (2021): Sustainable use of biowaste for synthesis of silver nanoparticles and its incorporation into gelatin-based nanocomposite films for antimicrobial food packaging applications. Journal of Food Process Engineering, 44: e13641. https://doi.org/10.1111/jfpe.13641
 
Kumari P., Alam M., Siddiqi W.A. (2019): Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. Sustainable Materials and Technologies, 22: e00128. https://doi.org/10.1016/j.susmat.2019.e00128
 
Li J., Zhang B., Chang X., Gan J., Li W., Niu S., Kong L., Wu T., Zhang T., Tang M., Xue Y. (2020): Silver nanoparticles modulate mitochondrial dynamics and biogenesis in HepG2 cells. Environmental Pollution, 256: 113430. https://doi.org/10.1016/j.envpol.2019.113430
 
Lopes C.R.B., Courrol L.C. (2018): Green synthesis of silver nanoparticles with extract of Mimusops coriacea and light. Journal of Luminescence, 199: 183–187. https://doi.org/10.1016/j.jlumin.2018.03.030
 
Maddinedi S.B., Mandal B.K., Maddili S.K. (2017): Biofabrication of size controllable silver nanoparticles – A green approach. Journal of Photochemistry and Photobiology B: Biology, 167: 236–241. https://doi.org/10.1016/j.jphotobiol.2017.01.003
 
Maillard A.P.V.F., Dalmasso P.R., De Mishima B.A.L., Hollmann A. (2018): Interaction of green silver nanoparticles with model membranes: Possible role in the antibacterial activity. Colloids Surf B Biointerfaces, 171: 320–326. https://doi.org/10.1016/j.colsurfb.2018.07.044
 
Moodley J.S., Krishna S.B.N., Pillay K., Govender S., Govender P. (2018): Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9: 015011. https://doi.org/10.1088/2043-6254/aaabb2
 
Mousavi S.M., Hashemi S.A., Ghasemi Y., Atapour A., Amani A.M., Dashtaki A.S., Babapoor A., Arjmand O. (2018): Green synthesis of silver nanoparticles toward bio and medical applications: Review study. Artificial Cells, Nanomedicine, and Biotechnology, 46: 855–872. https://doi.org/10.1080/21691401.2018.1517769
 
Muthusamy G., Thangasamy S., Raja M., Chinnappan S., Kandasamy S. (2017): Biosynthesis of silver nanoparticles from Spirulina microalgae and its antibacterial activity. Environmental Science and Pollution Research, 24: 19459–19464. https://doi.org/10.1007/s11356-017-9772-0
 
Nguyen T.D., Dang C.H., Mai D.T. (2018): Biosynthesized AgNP capped on novel nanocomposite 2-hydroxypropyl-β-cyclodextrin/alginate as a catalyst for degradation of pollutants. Carbohydrate Polymers, 197: 29–37. https://doi.org/10.1016/j.carbpol.2018.05.077
 
Otari S.V., Patil R.M., Nadaf N.H. (2014): Green synthesis of silver nanoparticles by microorganism using organic pollutant: Its antimicrobial and catalytic application. Environmental Science and Pollution Research, 21: 1503–1513. https://doi.org/10.1007/s11356-013-1764-0
 
Pallela P.N.V.K., Ummey S., Ruddaraju L.K., Pammi S.V.N., Yoon S.G. (2018): Ultra small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microbial Pathogenesis, 124: 63–69. https://doi.org/10.1016/j.micpath.2018.08.026
 
Parial D., Patra H.K., Dasgupta A.K., Pal R. (2012): Screening of different algae for green synthesis of gold nanoparticles. European Journal of Phycology, 47: 22–29. https://doi.org/10.1080/09670262.2011.653406
 
Patil M.P., Singh R.D., Koli P.B., Patil K.T., Jagdale P.S., Tipare A.R., Kim G.D. (2018): Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microbial Pathogenesis, 121: 184–189. https://doi.org/10.1016/j.micpath.2018.05.040
 
Popescu I., Caudullo G. (2016): Prunus cerasifera in Europe: Distribution, habitat, usage and threats. In: San-Miguel-Ayanz J., de Rigo D., Caudullo G., Houston Durrant T., Mauri A. (eds.): European Atlas of Forest Tree Species. Luxembourg, Publications Office of the European Union: e01dfbb+.
 
Pugazhendhi S., Palanisamy P.K., Jayavel R. (2018): Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications. Optical Materials, 79: 457–463. https://doi.org/10.1016/j.optmat.2018.04.017
 
Rajoka M.S.R., Mehwish H.M., Zhang H., Ashrafm., Fang H., Zeng X., Wu Y., Khurshid M., Zhao L., He Z. (2020): Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids and Surfaces B: Biointerfaces, 186: 110734. https://doi.org/10.1016/j.colsurfb.2019.110734
 
Ramya M., Subapriya M.S. (2012): Green synthesis of silver nanoparticles. International Journal of Pharma Medicine Biological Sciences, 1: 54–61.
 
Sarfraz J., Gulin-Sarfraz T., Nilsen-Nygaard J., Pettersen M.K. (2021): Nanocomposites for food packaging applications: An overview. Nanomaterials, 11: 10. https://doi.org/10.3390/nano11010010
 
Singh P., Kim Y.J., Zhang D., Yang D.C. (2016): Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34: 588–599. https://doi.org/10.1016/j.tibtech.2016.02.006
 
Smith E., Meissl K. (2007): The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Management, 27: 268–276. https://doi.org/10.1016/j.wasman.2006.01.016
 
Swamy M.K., Akhtar M.S., Mohanty S.K., Sinniah U.R. (2015): Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 151: 939–944. https://doi.org/10.1016/j.saa.2015.07.009
 
Swilam N., Nematallah K.A. (2020): Polyphenols profile of pomegranate leaves and their role in green synthesis of silver nanoparticles. Scientific Reports, 10: 14851. https://doi.org/10.1038/s41598-020-71847-5
 
Tavakol S., Hoveizi E., Kharrazi S., Tavakol B., Karimi S., Sorkhabadi S.M.R. (2016): Organelles and chromatin fragmentation of human umbilical vein endothelial cell influence by the effects of zeta potential and size of silver nanoparticles in different manners. Artificial Cells, Nanomedicine, and Biotechnology, 45: 817–823. https://doi.org/10.1080/21691401.2016.1178132
 
Thema F.T., Manikandan E., Dhlamini M.S., Maaza M. (2015): Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Materials Letters, 161: 124–127. https://doi.org/10.1016/j.matlet.2015.08.052
 
Thirumagal N., Jeyakumari A.P. (2020): Structural, optical and antibacterial properties of green synthesized silver nanoparticles (AgNPs) using Justicia adhatoda L. leaf extract. Journal of Cluster Science, 31: 487–497. https://doi.org/10.1007/s10876-019-01663-z
 
Thirumurugan A., Aswitha P., Kiruthika C., Nagarajan S., Christy A.N. (2016): Green synthesis of platinum nanoparticles using Azadirachta indica – An eco-friendly approach. Materials Letters, 170: 175–178. https://doi.org/10.1016/j.matlet.2016.02.026
 
Udayasoorian C., Kumar K.V., Jayabalakrishnan R.M. (2011): Extracellular synthesis of silver nanoparticles using leaf extract of Cassia auriculata. Digest Journal of Nanomaterials and Biostructures, 6: 279–283.
 
Yadi M., Mostafavi E., Saleh B., Davaran S., Aliyeva I., Khalilov R., Nikzamir M., Nikzamir N., Akbarzadeh A., Panahi Y., Milani M. (2018): Current developments in green synthesis of metallic nanoparticles using plant extracts: A review. Artificial Cells, Nanomedicine, and Biotechnology, 46: 336–343. https://doi.org/10.1080/21691401.2018.1492931
 
Zhang W., Jiang W. (2020): Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method. International Journal of Biological Macromolecules, 155: 1252–1261. https://doi.org/10.1016/j.ijbiomac.2019.11.093
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti