Antioxidant content and antioxidant activity in raisins from seedless hybrid vine varieties with coloured grape juice

https://doi.org/10.17221/160/2020-CJFSCitation:

Roychev V., Tzanova M., Keranova N., Peeva P. (2020): Antioxidant content and antioxidant activity in raisins from seedless hybrid vine varieties with coloured grape juice. Czech J. Food Sci., 38: 410–416.

download PDF

A study has been conducted on the antioxidant content and antioxidant activity in raisins from seedless hybrid varieties of vines with coloured grape juice. It has been found that the amounts of trans-resveratrol and quercetin as well as their antioxidant activity in raisins from the seedless coloured hybrid forms almost always mathematically exceed the levels of these indicators in the raisins of the Gamay Freaux, Black Corinth and Sangiovese grape varieties. It has been shown that 54% of the change in antioxidant activity is due to changes in the content of trans-resveratrol and 42% of quercetin. The applied mathematical models enable the theoretical study of the chemical composition of raisins of different grape varieties through the analytical forms of the proven relationships between them.

References:
Aldrich J., Conningham J. (2016): Using IBM SPSS Statistics: An Interactive Hands-on Approach, SAGE Publications, Inc., United States of America: 286.
 
Arias N., Macarulla M.T., Aguirre L., Milton I., Portillo M. (2016): The combination of resveratrol and quercetin enhances the individual effects of these molecules on triacylglycerol metabolism in white adipose tissue. European Journal of Nutrition, 55: 341–348. https://doi.org/10.1007/s00394-015-0854-9
 
Bavaresco L., Pezzutto S., Gatti M., Mattivi F. (2007): Role of the variety and some environmental factors on grapestilbenes. Vitis, 46: 57–61.
 
Cantos E., Espín J., Tomás-Barberán F. (2002): Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC−DAD−MS−MS. Journal of Agricultural and Food Chemistry, 50: 5691–5696. https://doi.org/10.1021/jf0204102
 
Careri M., Corradini C., Elviri L., Nicoletti I., Zagnoni I. (2003): Direct HPLC analysis of quercetin and trans-resveratrol in red wine, grape, and winemaking byproducts. Journal of Agricultural and Food Chemistry, 51: 5226–5231. https://doi.org/10.1021/jf034149g
 
Gatti M., Civardi S., Ferrari F., Fernandes N., van Zeller de Basto Gançalves M.I., Bavaresco L. (2014): Viticultural performances of different Cabernet Sauvignon clones. Acta Horticulturae, 1046: 659–664. https://doi.org/10.17660/ActaHortic.2014.1046.90
 
Gatto P., Vrhovsek U., Muth J., Segala S., Romualdi S., Fontana P., Pruefer D., Stefanini M., Moser C., Mattivi F., Velasco R. (2008): Ripening and genotype control stilbene accumulation in healthy grapes. Journal of Agricultural and Food Chemistry, 56: 11773–11785. https://doi.org/10.1021/jf8017707
 
Hilton P., McMurray I. (2014): Presenting your Data with SPSS Explained, Taylor & Francis, New York: 316.
 
Jang M., Cal L., Udeani G., Showing K., Thomas G. (1997): Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275: 218–220. https://doi.org/10.1126/science.275.5297.218
 
Khandelwal A., Hebert V., Kleinedler J., Rogers L., Ullevig S., Asmis R., Shi R., Dugas T. (2012): Resveratrol and quercetin interact to inhibit neointimal hyperplasia in mice with carotid injury. Journal of Nutrition, 142: 1487–1494. https://doi.org/10.3945/jn.112.162628
 
Lutz M., Jorquera K., Cancino B., Ruby R., Henriquez C. (2011): Phenolics and antioxidant capacity of table grape (Vitis vinifera L.) cultivars grown in Chile. Journal of Food Science, 76: 1088–1093. https://doi.org/10.1111/j.1750-3841.2011.02298.x
 
Meyers L., Gamst G., Guarino A. (2013): Performing Data Analysis Using IBM SPSS, John Wiley & Sons, Inc., Hoboken, New Jersey, USA: 159, 173.
 
Mikstacka R., Rimando A., Ignatowicz E. (2010): Antioxidant effect of trans-resveratrol, pterostilbene, quercetin and their combinations in human erythrocytes in vitro. Plant Foods for Human Nutrition, 65: 57–63. https://doi.org/10.1007/s11130-010-0154-8
 
Parker T., Wang T., Pazmiño J., Engeseth N. (2007): Antioxidant capacity and phenolic content of grapes, sun-dried raisins, and golden raisins and their effect on ex vivo serum antioxidant capacity. Journal of Agricultural and Food Chemistry, 55: 8472–8477. https://doi.org/10.1021/jf071468p
 
Pineiro Z., Palma M., Barroso C. (2006): Determination of trans-resveratrol in grapes by pressurised liquidextraction and fast high-performance liquid chromatography. Journal of Chromatography A, 1110: 61–65. https://doi.org/10.1016/j.chroma.2006.01.067
 
Sato M., Suzuki Y., Okuda T., Yokotsuka K. (1997): Contents of resveratrol, piceid, and their isomers in commercially available wines made from grapes cultivated in Japan. Bioscience, Biotechnology, and Biochemistry, 61: 1800–1805. https://doi.org/10.1271/bbb.61.1800
 
Serpen A., Capuano E., Fogliano V., Gökmen V. (2007): A new procedure to measure the antioxidant activity of insoluble food components. Journal of Agricultural and Food Chemistry, 55: 7676–7681. https://doi.org/10.1021/jf071291z
 
Shahidi F. (1997): Natural Antioxidants Chemistry, Health Effects, and Applications. AOCS Press, Champaign, Illinois: 432.
 
Tzanova M., Peeva P. (2018): Rapid HPLC method for simultaneous quantification of trans-resveratrol and quercetin in the skin of red grapes. Food Analytical Methods, 11: 514– 521. https://doi.org/10.1007/s12161-017-1022-z
 
Williamson G., Carughi A. (2010): Polyphenol content and health benefits of raisins. Nutrition Research, 30: 511–9. https://doi.org/10.1016/j.nutres.2010.07.005
 
Yang J., Martinson T., Liu R.H. (2009): Phytochemical profiles and antioxidant activities of wine grapes. Food Chemistry, 116: 332–339. https://doi.org/10.1016/j.foodchem.2009.02.021
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti