Analysis of production and investment efficiency in the Mexican food industry: Application of two-stage DEA

Flegl M., Jiménez-Bandala C.A., Sánchez-Juárez I., Matus E. (2022): Analysis of production and investment efficiency in the Mexican food industry: Application of two-stage DEA. Czech J. Food Sci., 40: 109–117.

download PDF

The food industry in Mexico is a precarious sector and lags behind other manufacturing industries, it is made up mainly of small and medium-sized enterprises. Its importance in the food assurance of the country requires strategic monitoring of the yield and efficiency variables that allow successful interventions to improve results. Commonly, the efficiency in the agriculture sector is evaluated as a one-stage data envelopment analysis (DEA) process using a specific set of variables. In this article, we applied a two-stage process to evaluate the efficiency in the Mexican food industry. The first stage evaluates the efficiency of the production, whereas the second stage evaluates the efficiency of investments in the sector. The process is demonstrated on a sample of 1 672 Mexican municipalities using data from 2014 and 2019 Census. The results indicate a growth in production efficiency with significant differences between regions. Moreover, the results also revealed very low investment efficiency in the whole food sector with a negative tendency.

Atici K.B., Podinovski V.V. (2015): Using data envelopment analysis for the assessment of technical efficiency of units with different specialisations: An application to agriculture. Omega, 54: 72–83.
Ayvar Campos F.J., Navarro Chávez J.C.L., Zamora Torres A.I. (2018): The Mexican agricultural sector in the context of APEC: A data envelopment analysis with presence of 'bad outputs' (El sector agropecuario Mexicano en APEC: Un análisis a través de la envolvente de datos con presencia de bad outputs). Análisis Económico, 33: 125–143. (in Spanish)
Bagchi M., Rahman S., Shunbo Y. (2019): Growth in agricultural productivity and its components in Bangladeshi regions (1987–2009): An application of bootstrapped data envelopment analysis (DEA). Economies, 7: 37.
Becerril-Torres O.U., Rodríguez Licea G., Ramírez Hernández J.J. (2011): Technical efficiency of the agricultural sector in Mexico: An overview of data envelopment analysis (Eficiencia técnica del sector agropecuario de México: Una perspectiva de análisis envolvente de datos). Economía, 31: 85–110. (in Spanish)
Carbajal Suárez Y., de Jesús Almonte L. (2017): Manufacturing labor in the Central Region of Mexico. An estimation by great division. Contaduria y Administracion, 62: 902–923.
Charnes A., Cooper W., Rhodes E. (1978): Measuring the efficiency of decision making units. European Journal of Operational Research, 2: 429–44.
Cooper W., Seiford L., Zhu J. (2011): Handbook on Data Envelopment Analysis. New York, US, Springer: 1–40.
Dios-Palomares R., Martínez-Paz J. (2011): Technical, quality and environmental efficiency of the olive oil industry. Food Policy, 36: 526–534.
Duman G.M., Tozanli O., Kongar E., Gupta S.M. (2017): A holistic approach for performance evaluation using quantitative and qualitative data: A food industry case study. Expert Systems with Applications, 81: 410–422.
Hoang V.N., Alauddin M. (2012): Input-orientated data envelopment analysis framework for measuring and decomposing economic, environmental and ecological efficiency: An application to OECD agriculture. Environmental and Resource Economics, 51: 431–452.
Ibrahim M.D., Ferreira D.C., Daneshvar S., Marques R.C. (2019): Transnational resource generativity: Efficiency analysis and target setting of water, energy, land, and food nexus for OECD countries. Science of the Total Environment, 697: 134017.
INEGI (2014): Mexico – Economic Censuses 2014 (México – Censos Económicos 2014). National Institute of Statistics and Geography [Instituto Nacional de Estadística y Geografía (INEGI)]. Available at (accessed June 1, 2021). (in Spanish)
INEGI (2019): Mexico – Economic Censuses 2019 (México – Censos Económicos 2019). National Institute of Statistics and Geography [Instituto Nacional de Estadística y Geografía (INEGI)]. Available at (accessed June 1, 2021). (in Spanish)
INEGI (2020): Mexico – System of National Accounts (México – Sistema de Cuentas Nacionales). National Institute of Statistics and Geography [Instituto Nacional de Estadística y Geografía (INEGI)]. Available at (accessed June 1, 2021). (in Spanish)
Isiordia-Lachica P.C., Valenzuela A., Rodríguez-Carvajal R.A., Hernández-Ruiz J., Romero-Hidalgo J.A. (2020): Identification and analysis of technology and knowledge transfer experiences for the agro-food sector in Mexico. Journal of Open Innovation: Technology, Market, and Complexity, 6: 59.
Jiménez-Bandala C.A. (2018): Development in Southern Mexico: Empirical verification of the 'seven erroneous theses about Latin America'. Latin American Perspectives, 45: 129–141.
Kao C., Hwang S.N. (2008): Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research, 185: 418–429.
Krejčí I., Moulis P., Pitrová J., Tichá I., Pilař L., Rydval J. (2019): Traps and opportunities of Czech small-scale beef cattle farming. Sustainability, 11: 4245.
Kuo H.F., Chen H.L., Tsou K.W. (2014): Analysis of farming environmental efficiency using a DEA model with undesirable outputs. APCBEE Procedia, 10: 154–158.
Marcikić-Horvat A., Radovanov B., Popescu G.H., Panaitescu C. (2019): A two-stage DEA model to evaluate agricultural efficiency in case of Serbian districts. Economics of Agriculture, 66: 965–974.
Mardani M., Salarpour M. (2015): Measuring technical efficiency of potato production in Iran using robust data envelopment analysis. Information Processing in Agriculture, 2: 6–14.
Meena S.R., Meena S.D., Pratap S., Patidar R., Daultani Y. (2019): Strategic analysis of the Indian agri-food supply chain. OPSEARCH, 56: 965–982.
Moreno-Moreno J., Velasco Morente F., Sanz Díaz M.T. (2018): Assessment of the operational and environmental efficiency of agriculture in Latin America and the Caribbean. Agricultural Economics, 64: 74–88.
Raheli H., Rezaei R.M., Jadidi M.R., Mobtaker M.B. (2017): A two-stage DEA model to evaluate sustainability and energy efficiency of tomato production. Information Processing in Agriculture, 4: 342–350.
Raut R.D., Luthra S., Narkhede B.E., Mangla S.K., Gardas B.B., Priyadarshinee P. (2019): Examining the performance oriented indicators for implementing green management practices in the Indian agro sector. Journal of Cleaner Production, 215: 926–943.
Revilla D., García-Andrés A., Sánchez-Juárez I. (2015): Identification of key productive sectors in the Mexican Economy. Expert Journal of Economics, 3: 22–39.
Toma E., Dobre C., Dona I., Cofas E. (2015): DEA applicability in assessment of agriculture efficiency on areas with similar geographically patterns. Agriculture and Agricultural Science Procedia, 6: 704–711.
Tomšíková K., Hudečková H., Tomšík K. (2019): Enhancing attractiveness of secondary agricultural education in the Czech Republic. Journal on Efficiency and Responsibility in Education and Science, 12: 135–145.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti