Screening of Lactobacillus plantarum with broad-spectrum antifungal activity and its application in preservation of golden-red apples

https://doi.org/10.17221/175/2020-CJFSCitation:

Li K., Zhang W., Kwok L.Y., Menghe B. (2020): Screening of Lactobacillus plantarum with broad-spectrum antifungal activity and its application in preservation of golden-red apples. Czech J. of Food Sci., 38: 315–322.

download PDF

Fungal food spoilage is a common problem that leads to both great economic losses and serious health problems. This study screened the antifungal activity of 137 Lactobacillus plantarum isolates against six common food spoilage indicator fungi using an overlay method and indicator strains of the species Aspergillus flavus, Fusarium moniliforme, Penicillium expansum, Penicillium chrysogenum, Cladosporium cladosporioides, and Aspergillus niger. Among Lactobacillus plantarum isolates, strain IMAU80174 was selected as the most effective based on the results of mycelium growth inhibition by its cell-free supernatant (CFS) and tolerance to simulated gastrointestinal juices and bile. The CFS of Lactobacillus plantarum IMAU80174 showed heat and protease resistance, and it was active only in a low pH environment. The application of the CFS to golden-red apples could slow down spoilage caused by inoculation of Penicillium expansum.

References:
Anderson R.C., Cookson A.L., McNabb W.C., Kelly W.J., Roy N.C. (2010): Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiology Letters, 309: 184–192.
 
Axel C., Zannini E., Arendt E.K. (2017): Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Critical Reviews in Food Science and Nutrition, 57: 3528–3542. https://doi.org/10.1080/10408398.2016.1147417
 
Bianchini A., Bullerman L.B. (2009). Biological control of molds and mycotoxins in foods. Acs Symposium Series, Oxford University Press, 1031: 1–16.
 
Dal Bello F., Clarke C.I., Ryan L.A.M., Ulmer H., Schober T.J., Ström K., Sjögren J., Van Sinderen D., Schnürer J., Arendt E.K. (2007): Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. Journal of Cereal Science, 45: 309–318.
 
Van Sinderen D., Schnürer J., Arendt E.K. (2007): Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. Journal of Cereal Science, 45: 309–318. https://doi.org/10.1016/j.jcs.2006.09.004
 
Dalié D.K.D., Deschamps A.M., Richard-Forget F. (2010) Lactic acid bacteria – Potential for control of mould growth and mycotoxins: A review. Food Control, 21: 370–380. https://doi.org/10.1016/j.foodcont.2009.07.011
 
De Vries M.C., Vaughan E.E., Kleerebezem M., De Vos W.M. (2006): Lactobacillus plantarum – survival, functional and potential probiotic properties in the human intestinal tract. International Dairy Journal, 16: 1018–1028. https://doi.org/10.1016/j.idairyj.2005.09.003
 
Han J., Lin K., Sequeira C., Borchers C.H. (2015): An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography–tandem mass spectrometry. Analytica Chimica Acta, 854: 86–94. https://doi.org/10.1016/j.aca.2014.11.015
 
Lavermicocca P., Valerio F., Evidente A., Lazzaroni S., Corsetti A., Gobbetti M. (2000): Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Applied and Environmental Microbiology, 66: 4084–4090. https://doi.org/10.1128/AEM.66.9.4084-4090.2000
 
Le Lay C., Coton E., Le Blay G., Chobert J.M., Haertlé T., Choiset Y., Van Long N.N., Meslet-Cladière L., Mounier J. (2016a): Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria. International Journal of Food Microbiology, 239: 79–85.
 
Le Lay C., Mounier J., Vasseur V., Weill A., Le Blay G., Barbier G., Coton E. (2016b): In vitro and in situ screening of lactic acid bacteria and propionibacteria antifungal activities against bakery product spoilage molds. Food Control, 60: 247–255.
 
Li P., Gu Q., Yang L., Yu Y., Wang Y. (2017): Characterization of extracellular vitamin B12 producing Lactobacillus plantarum strains and assessment of the probiotic potentials. Food Chemistry, 234: 494–501. https://doi.org/10.1016/j.foodchem.2017.05.037
 
Lipińska L., Klewicki R., Klewicka E., Kołodziejczyk K., Sójka M., Nowak, A. (2016): Antifungal activity of lactobacillus sp. bacteria in the presence of xylitol and galactosyl-xylitol. Journal of Biomedicine and Biotechnology, 2016: 1–8.
 
Lv X., Ma H., Lin Y., Bai F., Ge Y., Zhang D., Li J. (2018): Antifungal activity of Lactobacillus plantarum C10 against Trichothecium roseum and its application in promotion of defense responses in muskmelon (Cucumis melo L.) fruit. Journal of Food Science and Technology, 55: 3703–3711.
 
Muhialdin B.J., Hassan Z., Saari N. (2018): In vitro antifungal activity of lactic acid bacteria low molecular peptides against spoilage fungi of bakery products. Annals of Microbiology, 68: 557–567.
 
Niku-Paavola M.L., Laitila A., Mattila-Sandholm T., Haikara A. (1999): New types of antimicrobial compounds produced by Lactobacillus plantarum. Journal of Applied Microbiology, 86: 29–35. https://doi.org/10.1046/j.1365-2672.1999.00632.x
 
Papadimitriou K., Pot B., Tsakalidou E. (2015): How microbes adapt to a diversity of food niches. Current Opinion in Food Science, 2: 29–35. https://doi.org/10.1016/j.cofs.2015.01.001
 
Pitt J.I., Hocking A.D. (2009). Fungi and food spoilage. Springer, New York: 401–421.
 
Prema P., Smila D., Palavesam A., Immanuel G. (2010): Production and characterization of an antifungal compound (3-phenyllactic acid) produced by Lactobacillus plantarum strain. Food and Bioprocess Technology, 3: 379–386. https://doi.org/10.1007/s11947-008-0127-1
 
Rao K.P., Deepthi B.V., Rakesh S., Ganesh T., Achar P., Sreenivasa M.Y. (2019): Antiaflatoxigenic Potential of Cell-Free Supernatant from Lactobacillus plantarum MYS44 Against Aspergillus parasiticus. Probiotics and Antimicrobial Proteins, 11: 55–64. https://doi.org/10.1007/s12602-017-9338-y
 
Rouse S., Harnett D., Vaughan A., Sinderen D.V. (2008): Lactic acid bacteria with potential to eliminate fungal spoilage in foods. Journal of Applied Microbiology, 104: 915–923. https://doi.org/10.1111/j.1365-2672.2007.03619.x
 
Russo P., Arena M. P., Fiocco D., Capozzi V., Drider D., Spano G. (2017): Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. International Journal of Food Microbiology, 247: 48–54. https://doi.org/10.1016/j.ijfoodmicro.2016.04.027
 
Sangmanee P., Hongpattarakere T. (2014): Inhibitory of multiple antifungal components produced by Lactobacillus plantarum K35 on growth, aflatoxin production and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Control, 40: 224–233. https://doi.org/10.1016/j.foodcont.2013.12.005
 
Schnürer J., Magnusson J. (2005): Antifungal lactic acid bacteria as biopreservatives. Trends in Food Science & Technology, 16: 70–78.
 
Sevgi E., Ignatova-Ivanova T. (2015): Antifungal activity of lactic acid bacteria, isolated from Bulgarian wheat and rye flour. Journal of Life Sciences, 9: 1–6.
 
Ström K., Sjögren J., Broberg A., Schnürer J. (2002): Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Applied and Environmental Microbiology, 68: 4322–4327. https://doi.org/10.1128/AEM.68.9.4322-4327.2002
 
Suhr K.I., Nielsen P.V. (2004): Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values. International Journal of Food Microbiology, 95: 67–78. https://doi.org/10.1016/j.ijfoodmicro.2004.02.004
 
Walker D. K., Gilliland S. E. (1993): Relationships among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus. Journal of Dairy Science, 76: 956–961.
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti