Anderson R.C., Cookson A.L., McNabb W.C., Kelly W.J., Roy N.C. (2010): Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiology Letters, 309: 184–192.
Axel C., Zannini E., Arendt E.K. (2017): Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Critical Reviews in Food Science and Nutrition, 57: 3528–3542.
https://doi.org/10.1080/10408398.2016.1147417
Bianchini A., Bullerman L.B. (2009). Biological control of molds and mycotoxins in foods. Acs Symposium Series, Oxford University Press, 1031: 1–16.
Dal Bello F., Clarke C.I., Ryan L.A.M., Ulmer H., Schober T.J., Ström K., Sjögren J., Van Sinderen D., Schnürer J., Arendt E.K. (2007): Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. Journal of Cereal Science, 45: 309–318.
Van Sinderen D., Schnürer J., Arendt E.K. (2007): Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. Journal of Cereal Science, 45: 309–318.
https://doi.org/10.1016/j.jcs.2006.09.004
Dalié D.K.D., Deschamps A.M., Richard-Forget F. (2010) Lactic acid bacteria – Potential for control of mould growth and mycotoxins: A review. Food Control, 21: 370–380.
https://doi.org/10.1016/j.foodcont.2009.07.011
De Vries M.C., Vaughan E.E., Kleerebezem M., De Vos W.M. (2006): Lactobacillus plantarum – survival, functional and potential probiotic properties in the human intestinal tract. International Dairy Journal, 16: 1018–1028.
https://doi.org/10.1016/j.idairyj.2005.09.003
Han J., Lin K., Sequeira C., Borchers C.H. (2015): An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography–tandem mass spectrometry. Analytica Chimica Acta, 854: 86–94.
https://doi.org/10.1016/j.aca.2014.11.015
Lavermicocca P., Valerio F., Evidente A., Lazzaroni S., Corsetti A., Gobbetti M. (2000): Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Applied and Environmental Microbiology, 66: 4084–4090.
https://doi.org/10.1128/AEM.66.9.4084-4090.2000
Le Lay C., Coton E., Le Blay G., Chobert J.M., Haertlé T., Choiset Y., Van Long N.N., Meslet-Cladière L., Mounier J. (2016a): Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria. International Journal of Food Microbiology, 239: 79–85.
Le Lay C., Mounier J., Vasseur V., Weill A., Le Blay G., Barbier G., Coton E. (2016b): In vitro and in situ screening of lactic acid bacteria and propionibacteria antifungal activities against bakery product spoilage molds. Food Control, 60: 247–255.
Li P., Gu Q., Yang L., Yu Y., Wang Y. (2017): Characterization of extracellular vitamin B12 producing Lactobacillus plantarum strains and assessment of the probiotic potentials. Food Chemistry, 234: 494–501.
https://doi.org/10.1016/j.foodchem.2017.05.037
Lipińska L., Klewicki R., Klewicka E., Kołodziejczyk K., Sójka M., Nowak, A. (2016): Antifungal activity of lactobacillus sp. bacteria in the presence of xylitol and galactosyl-xylitol. Journal of Biomedicine and Biotechnology, 2016: 1–8.
Lv X., Ma H., Lin Y., Bai F., Ge Y., Zhang D., Li J. (2018): Antifungal activity of Lactobacillus plantarum C10 against Trichothecium roseum and its application in promotion of defense responses in muskmelon (Cucumis melo L.) fruit. Journal of Food Science and Technology, 55: 3703–3711.
Muhialdin B.J., Hassan Z., Saari N. (2018): In vitro antifungal activity of lactic acid bacteria low molecular peptides against spoilage fungi of bakery products. Annals of Microbiology, 68: 557–567.
Niku-Paavola M.L., Laitila A., Mattila-Sandholm T., Haikara A. (1999): New types of antimicrobial compounds produced by Lactobacillus plantarum. Journal of Applied Microbiology, 86: 29–35.
https://doi.org/10.1046/j.1365-2672.1999.00632.x
Papadimitriou K., Pot B., Tsakalidou E. (2015): How microbes adapt to a diversity of food niches. Current Opinion in Food Science, 2: 29–35.
https://doi.org/10.1016/j.cofs.2015.01.001
Pitt J.I., Hocking A.D. (2009). Fungi and food spoilage. Springer, New York: 401–421.
Prema P., Smila D., Palavesam A., Immanuel G. (2010): Production and characterization of an antifungal compound (3-phenyllactic acid) produced by Lactobacillus plantarum strain. Food and Bioprocess Technology, 3: 379–386.
https://doi.org/10.1007/s11947-008-0127-1
Rao K.P., Deepthi B.V., Rakesh S., Ganesh T., Achar P., Sreenivasa M.Y. (2019): Antiaflatoxigenic Potential of Cell-Free Supernatant from Lactobacillus plantarum MYS44 Against Aspergillus parasiticus. Probiotics and Antimicrobial Proteins, 11: 55–64.
https://doi.org/10.1007/s12602-017-9338-y
Rouse S., Harnett D., Vaughan A., Sinderen D.V. (2008): Lactic acid bacteria with potential to eliminate fungal spoilage in foods. Journal of Applied Microbiology, 104: 915–923.
https://doi.org/10.1111/j.1365-2672.2007.03619.x
Russo P., Arena M. P., Fiocco D., Capozzi V., Drider D., Spano G. (2017): Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. International Journal of Food Microbiology, 247: 48–54.
https://doi.org/10.1016/j.ijfoodmicro.2016.04.027
Sangmanee P., Hongpattarakere T. (2014): Inhibitory of multiple antifungal components produced by Lactobacillus plantarum K35 on growth, aflatoxin production and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Control, 40: 224–233.
https://doi.org/10.1016/j.foodcont.2013.12.005
Schnürer J., Magnusson J. (2005): Antifungal lactic acid bacteria as biopreservatives. Trends in Food Science & Technology, 16: 70–78.
Sevgi E., Ignatova-Ivanova T. (2015): Antifungal activity of lactic acid bacteria, isolated from Bulgarian wheat and rye flour. Journal of Life Sciences, 9: 1–6.
Ström K., Sjögren J., Broberg A., Schnürer J. (2002): Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Applied and Environmental Microbiology, 68: 4322–4327.
https://doi.org/10.1128/AEM.68.9.4322-4327.2002
Suhr K.I., Nielsen P.V. (2004): Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values. International Journal of Food Microbiology, 95: 67–78.
https://doi.org/10.1016/j.ijfoodmicro.2004.02.004
Walker D. K., Gilliland S. E. (1993): Relationships among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus. Journal of Dairy Science, 76: 956–961.