Analysis of total arsenic content in purchased rice from Ecuador

https://doi.org/10.17221/183/2018-CJFSCitation:Atiaga-Franco O., Otero X.L., Gallego-Picó A., Escobar-Castañeda L., Bravo-Yagüe J., Carrera-Villacrés D. (2019): Analysis of total arsenic content in purchased rice from Ecuador. Czech J. Food Sci., 37: 425-431.
download PDF

Natural and anthropogenic sources contribute to arsenic contamination in water and human food chain in Andean countries. Human exposure to arsenic via rice consumption is of great concern in countries where this crop is the dominant staple food, and limited information is available on the arsenic contamination on rice in Ecuador. This work was to contribute to the lack of knowledge analysing total arsenic by hydride generation-atomic absorption spectrometry in the samples of white, brown and parboiled rice purchased in Ecuadorian markets and produced in the two main rice wetlands in Ecuador, Guayas and Los Ríos, were carried out. For the samples from Guayas, arsenic concentration in white, brown and parboiled rice were 0.174 ± 0.014, 0.232 ± 0.021, and 0.186 ± 0.017 mg/kg respectively, whereas samples of white rice from Los Ríos showed a total arsenic level of 0.258 ± 0.037 mg/kg. This last arsenic concentration exceeds recommended maximum permissible limit by the FAO/WHO. Obtained data have available to estimate the Ecuadorian dietary exposure revealing serious health risk for population.

References:
Batista B.L., Souza J.M.O., De Souza S.S., Barbosa F. (2011): Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. Journal of Hazardous Materials, 191: 342–348. https://doi.org/10.1016/j.jhazmat.2011.04.087
 
Bundschuh J., Litter M.I., Parvez F., Roman-Ross G., Nicolli H.B., Jean J.S., Liu C.W., Lopez D., Armienta M.A., Guilherme L.R.G., Gomez Cuevas A., Cornejo L., Cumbal L., Toujaguez R. (2012a): One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of the Total Environment, 429: 2–35. https://doi.org/10.1016/j.scitotenv.2011.06.024
 
Bundschuh J., Nath B., Bhattacharya P., Liu C.W., Armienta M.A., Moreno M.V., Lopez D.L., Jean J.S., Cornejo L., Lauer L.F., Tenuta A. (2012b): Arsenic in the human food chain: the Latin American perspective. Science of The Total Environment, 429: 92–106. https://doi.org/10.1016/j.scitotenv.2011.09.069
 
Cumbal L., Vallejo P., Rodriguez B., Lopez D. (2010): Arsenic in geothermal sources at the north-central Andean region of Ecuador: concentrations and mechanisms of mobility. Environmental Earth Sciences, 61: 299–310. https://doi.org/10.1007/s12665-009-0343-7
 
EU (2015): Commission Regulation (EU) 2015/1006 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs. Official Journal of the European Union, L16: 14–16.
 
Farías S.S., Londonio A., Quintero C., Befani R., Soro M., Smichowski P. (2015): On-line speciation and quantification of four arsenical species in rice samples collected in Argentina using a HPLC–HG–AFS coupling. Microchemical Journal, 120: 34–39.
 https://doi.org/10.1016/j.microc.2014.12.010
 
Hojsak I., Braegger C., Bronsky J., Campoy C., Colomb V., Desci T., Domellof M., Fewtrell M., Fildler N., Mihatsch W., Molgaard C., van Goudoeve J. (2015): Arsenic in rice: A cause for concern. Journal of Pediatric Gastroenterology and Nutrition, 60: 142–145. https://doi.org/10.1097/MPG.0000000000000502
 
Jaafar M., Marcilla A.L., Felipe-Sotelo M., Ward N.I. (2018): Effect of food preparation using naturally-contaminated groundwater from La Pampa, Argentina: Estimation of elemental dietary intake from rice and drinking water. Food Chemistry, 246: 258–265. https://doi.org/10.1016/j.foodchem.2017.11.019
 
Knee K.L., Encalada A.C. (2014): Land use and water quality in a rural cloud forest region (Intag, Ecuador). River Research and Applications, 30: 385–401. https://doi.org/10.1002/rra.2634
 
Lee S.G., Kim D.I., Lee Y.S., Cho S.Y., Chung M.S., Cho M., Kang Y.W., Kim I.J., Kim D.S., Lee K.W. (2018): Monitoring of arsenic contents in domestic rice and human risk assessment for daily intake of inorganic arsenic in Korea. Journal of Food Composition and Analysis, 69: 25–32. https://doi.org/10.1016/j.jfca.2018.02.004
 
López D.L., Bundschuh J., Birkle P., Armienta M.A., Cumbal L., Sracek O., Cornejo L., Ormachea M. (2012): Arsenic in volcanic geothermal fluids of Latin America. Science of the Total Environment, 429: 57–75. https://doi.org/10.1016/j.scitotenv.2011.08.043
 
Matos-Reyes M.N., Cervera M.L., Campos R.C., De la Guardia M. (2010): Total content of As, Sb, Se, Te and Bi in Spanish vegetables, cereals and pulses and estimation of the contribution of these foods to the Mediterranean daily intake of trace elements. Food Chemistry, 122: 188–194. https://doi.org/10.1016/j.foodchem.2010.02.052
 
McClintock T.R., Chen Y., Bundschuh J., Oliver J.T., Navoni J., Olmos V., Lepori E.V., Ahsan H., Parvez F. (2012): Arsenic exposure in Latin America: Biomarkers, risk assessments and related health effects. Science of the Total Environment, 429: 76–91. https://doi.org/10.1016/j.scitotenv.2011.08.051
 
Meharg A.A., Williams P.N., Adomako E., Lawgali Y.Y., Deacon C., Villada A., Cambell R.C.J., Sun G., Zhu Y.G., Feldmann J., Raab A., Zhao F.J., Islam R., Hossain S., Yanai J. (2009): Geographical variation in total and inorganic arsenic content of polished (white) rice. Environmental Science & Technology, 43: 1612–1617.
 
Montero-Oleas N., Núñez-González S., Simancas-Racines D. (2017): The remarkable geographical pattern of gastric cancer mortality in Ecuador. Cancer Epidemiology, 51: 92–97. https://doi.org/10.1016/j.canep.2017.10.014
 
Nookabkaew S., Rangkadilok N., Mahidol C., Promsuk G., Satayavivad J. (2013): Determination of arsenic species in rice from Thailand and other Asian countries using simple extraction and HPLC-ICP-MS analysis. Journal of Agricultural and Food Chemistry, 61: 6991–6998. https://doi.org/10.1021/jf4014873
 
Nunes L.M., Otero X. (2017): Quantification of health risks in Ecuadorian population due to dietary ingestion of arsenic in rice. Environmental Science and Pollution Research, 24: 27457–27468. https://doi.org/10.1007/s11356-017-0265-y
 
Otero X.L., Tierra W., Atiaga O., Ganoluisa D., Nunes L.M., Ferreira T.O., Ruales J. (2016): Arsenic in rice agrosystems (water, soil and rice plants) in Guayas and Los Ríos provinces, Ecuador. Science of the Total Environment, 573: 778–787. https://doi.org/10.1016/j.scitotenv.2016.08.162
 
Pozo W., Sanfeliu T., Carrera G. (2011): Metales pesados en humedales de arroz en la cuenca baja del río Guayas. Maskana, 2: 17–30.  https://doi.org/10.18537/mskn.02.01.02
 
Rahman M.A., Rahman M.M., Reichman S.M., Lim R.P., Naidu R. (2014): Arsenic speciation in Australian-Grown and imported rice on sale in Australia: Implications for human health risk. Journal of Agricultural and Food Chemistry, 62: 6016–6024. https://doi.org/10.1021/jf501077w
 
Sharma A. K., Tjell J.C., Sloth J.J., Holm P.E. (2014): Review of arsenic contamination, exposure through water and food and low cost mitigation options for rural areas. Applied Geochemistry, 41: 11–33. https://doi.org/10.1016/j.apgeochem.2013.11.012
 
Walpole S.C., Prieto-Merino D., Edwards P., Cleland J., Stevens G., Roberts I. (2012): The weight of nations: An estimation of adult human biomass. Bmc Public Health, 12: 1–6. https://doi.org/10.1186/1471-2458-12-439
 
Williams P.N., Price A.H., Raab A., Hossain S.A., Feldmann J., Meharg A.A. (2005): Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environmental Science & Technology, 39: 5531–5540.
 
download PDF

© 2020 Czech Academy of Agricultural Sciences