Extrusion process of maize grits used for nixtamalization

https://doi.org/10.17221/188/2021-CJFSCitation:

Olšaníková K., Šárka E., Smrčková P. (2022): Extrusion process of maize grits used for nixtamalization. Czech J. Food Sci., 40: 138–146.

download PDF

The aim of the paper was to seek optimum conditions of extrusion cooking and follow-up processing to produce high-quality tortillas with good sensory properties. Sixteen samples of maize flour were prepared by extrusion with and without alkaline treatment. The extrudate diameters depended primarily on the moisture content of the premix and the temperature in the extruder. Alkaline treatment with calcium hydroxide [Ca(OH)2] had a strong effect on water absorption index (WAI), water solubility index (WSI), pH, and colour of the extrudates. Besides, WAI was influenced by the moisture of the premix and by the temperature in the second zone of the extruder. Soluble dietary fibre (SDF) in the samples with the addition of Ca(OH)2 increased more than in the samples without alkaline treatment. In addition, a higher screw speed influenced SDF. The texture of the tortillas was very dependent on the addition of Ca(OH)2, on the moisture of the premix and the temperature in the second zone of the extruder.

References:
Bressani R. (1990): Chemistry, technology, and nutritive value of maize tortillas. Food Research International, 6: 225–264. https://doi.org/10.1080/87559129009540868
 
Corrales-Banuelos A.B., Cuevas-Rodríguez E.O., Gutierrez-Uribe J.A., Milan-Noris E.M., Reyes-Moreno C., Carrillo J.M., Mora-Rochín S. (2016): Carotenoid composition and antioxidant activity of tortillas elaborated from pigmented maize landrace by traditional nixtamalization or lime cooking extrusion process. Journal of Cereal Science, 69: 64–70. https://doi.org/10.1016/j.jcs.2016.02.009
 
Ding Q.B., Ainsworth P., Tucker G., Marson H. (2005): The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. Journal of Food Engineering, 66: 283–289. https://doi.org/10.1016/j.jfoodeng.2004.03.019
 
Frame N.D. (1995): The Technology of Extrusion Cooking. 1st Ed. London, United Kingdom, Blackie Academic & Professional: 185.
 
Gogoi B.K., Choudhury G.S., Oswalt A.J. (1996): Effects of location and spacing of reverse screw and kneading element combination during twin-screw extrusion of starchy and proteinaceous blends. Food Research International, 29: 505–512. https://doi.org/10.1016/S0963-9969(96)00051-8
 
Milán-Carrillo J., Gutiérrez-Dorado R., Perales-Sánchez J.X.K., Cuevas-Rodríguez E.O., Ramírez-Wong B., Reyes-Moreno C. (2006): The optimization of the extrusion process when using maize flour with a modified amino acid profile for making tortillas. International Journal of Food Science and Technology, 41: 727–736. https://doi.org/10.1111/j.1365-2621.2005.00997.x
 
Ning L., Villota R., Artz W. (1991): Modification of corn fiber through chemical treatments. Cereal Chemistry, 68: 632–636.
 
Panyoo A.E., Emmambux M.N. (2017): Amylose-lipid complex production and potential health benefits: A mini-review. Starch – Stärke, 69: 7–8. https://doi.org/10.1002/star.201600203
 
Pappa M.R., de Palomo P.P., Bressani R. (2010): Effect of lime and wood ash on the nixtamalization of maize and tortilla chemical and nutritional characteristics. Plant Foods for Human Nutrition, 65: 130–135. https://doi.org/10.1007/s11130-010-0162-8
 
Santiago-Ramos D., Figueroa-Cárdenas J. de D., Mariscal-Moreno R.M., Escalante-Aburto A., Ponce-García N., Véles-Medina J.J. (2018): Physical and chemical changes undergone by pericarp and endosperm during corn nixtamalization – A review. Journal of Cereal Science, 81: 108–117. https://doi.org/10.1016/j.jcs.2018.04.003
 
Šárka E., Němečková A., Chena Aldao D., Smrčková P. (2017): Properties of oral disintegrating tablets prepared from wheat starch and powdered cellulose using extrusion cooking. In: Proceedings of the 13th International Conference on Polysaccharides – Glycoscience, Prague, Czech Republic, Apr 9–12, 2017: 275–279.
 
Šárka E., Sluková M., Henke S. (2021): Changes in phenolics during cooking extrusion: A review. Foods, 10: 2100. https://doi.org/10.3390/foods10092100
 
Šárka E., Smrčková P., Chena Aldao D., Saglamtas M., Koláček J., Pour V. (2015): Influence of process parameters and added starches on resistant starch content and sensory properties of maize extrudates. Starch – Stärke, 67: 737–744. https://doi.org/10.1002/star.201500059
 
Sefa-Dedeh S., Cornelius B., Sakyi-Dawson E., Afoakwa E.O. (2004): Effect of nixtamalization on the chemical and functional properties of maize. Food Chemistry, 86: 317–324. https://doi.org/10.1016/j.foodchem.2003.08.033
 
Ye J., Hu X., Luo S., Liu W., Chen J., Zeng Z., Liu C. (2018): Properties of starch after extrusion: A review. Starch – Stärke, 70: 1700110. https://doi.org/10.1002/star.201700110
 
Zazueta-Morales J., Martinez-Bustos F., Jacobo-Valenzuela N., Ordorica-Falomir C., Paredes-Lopez O. (2002): Effects of calcium hydroxide and screw speed on physicochemical characteristics of extruded blue maize. Journal of Food Science, 67: 3350–3358. https://doi.org/10.1111/j.1365-2621.2002.tb09590.x
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti