Fungal contamination spices from Indonesia with emphasis on Aspergillus flavus

https://doi.org/10.17221/18/2019-CJFSCitation:Nurtjahja K., Zuhra C.F., Sembiring H., Bungsu A., Simanullang J., Silalahi J.E., Gultom B.N.L., Sartini S. (2019): Fungal contamination spices from Indonesia with emphasis on Aspergillus flavus. Czech J. Food Sci., 37: 338-344.
download PDF

Filamentous fungi were isolated from ten spices collected from markets in Indonesia. The aim was to enumerate fungal contamination and to determine the toxigenicity of Aspergillus flavus strains on each of the spices. Viable fungal populations were determined using a dilution method. Toxigenicity of Aspergillus flavus was determined by culture on a quick screening coconut agar and by PCR using four sets of primers specific for aflatoxin pathway genes. All the tested spices were contaminated by storage fungi, Species of Aspergillus was the most commonly isolated moulds followed by species of Fusarium, Mucor, Penicillium and Rhizopus. The greatest number of Aspergillus flavus isolates were found on white pepper, followed by nutmeg, cardamom, and black pepper. The greatest number of Aspergillus chevalieri isolates were found on coriander, followed by nutmeg. Fifty strains of A. flavus were isolated, all of the strains produced large sclerotia and biseriate conidiophores. Their toxigenicity was assayed by the presence of yellow pigment on a quick screening coconut agar medium and PCR amplification of regulatory and structural genes in the aflatoxin pathway. 

References:
Aly S.E., Sabry B.A., Shaheen M.S., Hathout A.S. (2016): Assessment of antimycotoxigenic and antioxidant activity of star anise (Illicium verum) in vitro. Journal of the Saudi Society of Agricultural Sciences, 15: 20–27. https://doi.org/10.1016/j.jssas.2014.05.003
 
Criseo G., Bagnara A., Bisignano G. (2001): Differentiation of aflatoxin-producing and non-producing strains of Aspergillus flavus group. Letters in Applied Microbiology, 33: 291–295. https://doi.org/10.1046/j.1472-765X.2001.00998.x
 
Davis N.D., Iyer S.K., Diener U.L. (1987): Improved method of screening for aflatoxin with a coconut agar medium. Applied Environmental Microbiology, 53: 1593–1595.
 
Dharmaputra O.S., Ambarwati S., Retnowati I., Nurfadila N. (2015): Fungal infection and aflatoxin contamination in stored nutmeg (Myristica fragrans Houtt.) at various stages of the delivery chain in North Sulawesi province. Biotropia, 22: 129–139.
 
Dimić G.R., Kocić-Tanackov S.D., Tepić A.N., Vujičić B.L., Šumić Z.M. (2008): Mycopopulation of spices. APTEFF, 39: 1–9.  https://doi.org/10.2298/APT0839001D
 
Ehrlich K. (2014): Non-aflatoxigenic Aspergillus flavus to prevent aflatoxin contamination in crops: advantages and limitations. Frontier in Microbiology, 50: 1–9. https://doi.org/10.3389/fmicb.2014.00050
 
Erami M., Hashemi S.J., Pourbakhsh S.A., Shahsavandi S., Mohammadi S., Shooshtari A.H., Jahanshiri Z. (2007): Application of PCR on detection of aflatoxigenic fungi. Short communication. Archive of Razi Institute, 62: 95–100.
 
Hashem M., Alamri S. (2010): Contamination of common spices in Saudi Arabia markets with potential mycotoxin-producing fungi. Saudi Journal of Biological Sciences, 17: 167–175.  https://doi.org/10.1016/j.sjbs.2010.02.011
 
Li Y., Nie Y., Zhou L., Li S., Tang X., Ding Y., Li S. (2014): The possible mechanism of antifungal activity in cinnamon oil against Rhizopus nigricans. Journal Chemistry. Pharmacy Research, 6: 12–20.
 
Lin M.T., Dianese J.C. (1976): A coconut-agar medium for rapid detection of aflatoxin production by Aspergillus spp., Phytopathology, 66: 1466–1469. https://doi.org/10.1094/Phyto-66-1466
 
Mohammadpour H., Moghimipour E., Rasooli I., Fakoor M.H., Astaneh S.A., Mosaie S.S., Jalili Z. (2012): Chemical composition and antifungal activity of Cuminum cyminum L. essential oil from Alborz Mountain against Aspergillus species. Jundishapur Journal of Natural Pharmaceutical Products, 7: 50–55. https://doi.org/10.17795/jjnpp-3445
 
Novas M.V., Cabral D. (2002): Association of mycotoxinand sclerotia production with compatibility groups in Aspergillus flavus from peanut in Argentina. Plant Disease, 86: 215–219. https://doi.org/10.1094/PDIS.2002.86.3.215
 
Nurtjahja K., Dharmaputra O.S., Pudjiastuti W.P., Syarief R. (2017): Fungal population of nutmeg (Myristica fragrans) kernels affected by water activity during storage. Agritech, 37: 288–294.  https://doi.org/10.22146/agritech.10639
 
Perrone G., Gallo A., Logrieco A.F. (2014): Biodiversity of Aspergillus section Flavi in Europe in relation to the management of aflatoxin risk. Frontiers Microbiology, 5: 1–5. https://doi.org/10.3389/fmicb.2014.00377
 
Pitt J.I., Hocking A.D. (2009): Fungi and Food Spoilage. New York, Springer: 305–311.
 
Samson R.A., Hoekstra R.S., Frisvad J.C. (2004): Introduction to Food- and Airborne Fungi. (6th Ed.). Utrecht, Centraalbureau voor Schimmelcultures: 1–389.
 
Škrinjar M.M., Janković V.V., Moračanin S.M.V., Vukojević J.B. (2012): Xerophilic moulds isolated from spices used in meat industry as potential producers of mycotoxins. In Proceedings National Science Matika Srpska Novi Sad, 123: 7–16.  https://doi.org/10.2298/ZMSPN1223007S
 
Toma F.M., Abdulla N.Q.F. (2013): Isolation and identification of fungi from spices and medicinal plants. Research Journal of Environmental and Earth Sciences, 5: 131–138. https://doi.org/10.19026/rjees.5.5648
 
Yu J., Chang P.K., Ehrlich K.C., Cary J.W., Bhatnagar D., Cleveland T.E., Payne G.A., Linz Z.E., Woloshuk C.P., Bennett J.W. (2004): Clustered Pathway genes in aflatoxin biosynthesis. Applied and Environmental Microbiology, 70: 1253–1262. https://doi.org/10.1128/AEM.70.3.1253-1262.2004
 
download PDF

© 2019 Czech Academy of Agricultural Sciences