Effects of cultivation media and NaCl concentration on the growth kinetics and biogenic amine production of Lactobacillus reuteri

https://doi.org/10.17221/190/2020-CJFSCitation:

Body P., Greif G., Greifová G., Sliacká M., Greifová M. (2021): Effects of cultivation media and NaCl concentration on the growth kinetics and biogenic amines production of Lactobacillus reuteri. Czech J. Food Sci., 39: 09–16.

download PDF

We analysed and compared the ability of four strains of Lactobacillus reuteri of sheep origin ranked as NSLAB (non-starter lactic acid bacteria) to grow and produce biogenic amines (BA) under cultivation conditions varying in cultivation media and salt content. The production of biogenic amines was primarily dependent on the growth rate of L. reuteri under particular cultivation conditions. From among produced BA, tyramine appeared as the dominant one while L. reuteri CCM 3644 possessed the most potent aminogenic ability. The influence of NaCl on the growth and production of BA was dependent on their concentration. Higher salt concentration (≥ 3% w/v) significantly inhibited the production of BA. On the contrary, the addition of 1–2% of NaCl w/v significantly improved the production of BA by three tested strains of L. reuteri (CCM 3642, 3644, and 3645). Finally, to better describe the production of BA over time, the relations between selected variables were calculated using linear regression. The appropriate fitting and the corresponding equations suggested the polynomial (degree 2) or exponential relations between the increasing concentration of NaCl and the concentration or calculated specific production rates of produced BA.

References:
Bargossi E., Tabanelli G., Montanari C., Lanciotti R., Gatto V., Gardini F., Torrian S. (2015): Tyrosine decarboxylase activity of enterococci grown in media with different nutritional potential: Tyramine and 2-phenylethylamine accumulation and tyrDC gene expression. Frontiers in Microbiology, 6: Article 259.
 
Benkerroum N. (2016): Biogenic amines in dairy products: origin, incidence, and control means. Comprehensive Reviews in Food Science and Food Safety, 15: 801–826. https://doi.org/10.1111/1541-4337.12212
 
Buňková L., Buňka F., Pollaková E., Podešová T., Dráb V. (2011): The effect of lactose, NaCl and an aero/anaerobic environment on the tyrosine decarboxylase activity of Lactococcus lactis subsp. cremoris and Lactococcus lactis subsp. Lactis. International Journal of Food Microbiology, 147: 112–119.
 
Buňková L., Buňka F., Dráb V., Kráčmar S., Kubáň V. (2012): Effects of NaCl, lactose and availability of oxygen on tyramine production by the Enterococcus durans CCDM 53. European Food Research and Technology, 234: 973–979. https://doi.org/10.1007/s00217-012-1714-y
 
Coda R., Brechany E., De Angelis M., De Candia S., Di Cagno R., Gobbetti M. (2006): Comparison of the compositional, microbiological, biochemical, and volatile profile characteristics of nine Italian ewes’ milk cheeses. Journal of Dairy Science, 89: 4126–4143. https://doi.org/10.3168/jds.S0022-0302(06)72458-4
 
De Angelis M., Corsetti A., Tosti N., Rossi J., Corbo M.R., Gobbetti M. (2001): Characterisation of non-starter lactic acid bacteria from Italian ewe cheeses based on phenotypic, genotypic, and cell wall protein analyses. Applied and Environmental Microbiology, 67: 2011–2020. https://doi.org/10.1128/AEM.67.5.2011-2020.2001
 
Doeun D., Davaatseren M., Chung M.S. (2017): Biogenic amines in foods. Food science and biotechnology, 26: 1463–1474. https://doi.org/10.1007/s10068-017-0239-3
 
EFSA (2011): Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA Journal, 9: 2393. https://doi.org/10.2903/j.efsa.2011.2393
 
FAO/WHO (2013): Public Health Risks of Histamine and Other Biogenic Amines from Fish and Fishery Products. Meeting Report. Food and Agriculture Organization of the United Nations/World Health Organization, July 13–27, 2012, Rome, Italy: 36–96.
 
Farnworth E.R. (2003). Handbook of Fermented Functional Foods. 1st Ed. CRC Press, Taylor & Francis Group, Boca Raton, Florida, USA: 347.
 
Gardini F., Martuscelli M., Caruso M.C., Galgano F., Crudele M.A., Favati F., Guerzoni M.E., Suzzi G. (2001): Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. International Journal of Food Microbiology, 64: 105–117. https://doi.org/10.1016/S0168-1605(00)00445-1
 
Gobbetti M., De Angelis M., Di Cagno R., Mancini L., Fox P.F. (2015): Pros and cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct starters for cheese ripening. Trends in Food Science & Technology, 45: 167–178.
 
Greif G., Greifová M., Karovičová J. (2006): Effects of NaCl concentration and initial pH value on biogenic amine formation dynamics by Enterobacter spp. bacteria in model conditions. Journal of Food and Nutrition Research, 45: 21–29.
 
Hladíková Z., Smetanková J., Greif G., Greifová M. (2012): Antimicrobial activity of selected lactic acid cocci and production of organic acids. Acta Chimica Slovaca, 5: 80–85. https://doi.org/10.2478/v10188-012-0013-3
 
Hou C., Zeng X., Yang F., Liu H., Qiao S. (2015): Study and use of the probiotic Lactobacillus reuteri in pigs: A review. Journal of Animal Science and Biotechnology, 6: 1–8.
 
Ladero V., Calles M., Fernandez M., Miguel A. (2010): Toxicological effect of dietary biogenic amines. Current Nutrition and Food Science, 6: 145–156. https://doi.org/10.2174/157340110791233256
 
Linares D.M., del Río B., Ladero V., Martínez N., Fernández M., Martín M.C., Álvarez M.A. (2012): Factors influencing biogenic amines accumulation in dairy products. Frontiers in Microbiology, 3: 180.
 
Neysens P., Messens W., De Vuyst L. (2003): Effect of sodium chloride on growth and bacteriocin production by Lactobacillus amylovorus DCE 471. International Journal of Food Microbiology, 88: 29–39. https://doi.org/10.1016/S0168-1605(03)00079-5
 
Perin L.M., Nero A.L. (2017): The relevance of biogenic amines in dairy products. In: Watson R., Collier R.J., Preed V. (eds): Dairy in Human Health and Disease Across the Lifespan. 1st Ed. Academic Press, Cambridge, Massachusetts: 169–182.
 
Renes E., Diezhandino I., Fernández D., Ferrazza R.E., Tornadijo M.E., Fresno J.M. (2014): Effect of autochthonous starter cultures on the biogenic amine content of ewe’s milk cheese throughout ripening. Food Microbiology, 44: 271–277. https://doi.org/10.1016/j.fm.2014.06.001
 
Suzzi G., Gardini F. (2003): Biogenic amines in dry fermented sausages: A review. International Journal of Food Microbiology, 88: 41–54. https://doi.org/10.1016/S0168-1605(03)00080-1
 
Wüthrich D., Berthoud H., Wechsler D., Eugster E., Irmler S., Bruggmann R. (2017): The histidine decarboxylase gene cluster of Lactobacillus parabuchneri was gained by horizontal gene transfer and is mobile within the species. Frontiers in Microbiology, 8: 218.
 
Zwietering M.H., Jongenburger I., Rombouts F.M., Van’t Riet K. (1990): Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56: 1875–1881. https://doi.org/10.1128/AEM.56.6.1875-1881.1990
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti