Modelling the inactivation of Staphylococcus aureusat moderate heating temperatures

Lehotová V., Miháliková K., Medveďová A., Valík L. (2021): Modelling the inactivation of Staphylococcus aureus at moderate heating temperatures. Czech J. Food Sci., 39: 42–48.

download PDF

The survival of bacterial contaminants at moderate processing temperatures is of interest to many food producers, especially in terms of the safety and quality of the final products. That is why the heat resistance of Staphylococcus aureus 2064, an isolate from artisanal Slovakian cheese, was studied in the moderate temperature range (57–61 °C) by the capillary method. The fourth decimal reduction time t4D- and z-values were estimated in two steps by traditional log-linear Bigelow and non-linear Weibull models. In addition, a one-step fitting procedure using the Weibull model was also applied. All the approaches provided comparable t4D-values resulting in the following z-values of 11.8 °C, 12.3 °C and 11.3 °C, respectively. Moreover, the one-step approach takes all the primary data into z-value calculation at once, thus providing a more representative output at the reasonable high coefficient of determination R2 = 0.961

Akineden Ö., Hassan A.A., Schneider E., Usleber E. (2008): Enterotoxigenic properties of Staphylococcus aureus isolated from goat’s milk cheese. International Journal of Food Microbiology, 124: 211–216.
Amado R.I., Vázquez J.A., Guerra N.P., Lorenzo P. (2014): Thermal resistance of Salmonella enterica, Escherichia coli and Staphylococcus aureus isolated from vegetable feed ingredients. Journal of Science and Food Agriculture, 94: 2274–2281.
Bigelow W.D., Esty J.R. (1920): The thermal death point in relation to time of typical thermophylic organisms. The Journal of Infectious Disease, 27: 602–617.
Boynukara B., Gulhan T., Alisarli M., Gurturk K., Solmaz H. (2008): Classical enterotoxigenic characteristics of Staphylococcus aureus strains isolated from bovine subclinical mastitis in Van, Turkey. International Journal of Food Microbiology, 125: 209–211.
Cebrián G., Condón S., Mañas P. (2017): Physiology of the inactivation of vegetative bacteria by thermal treatments: Mode of action, influence of environmental factors and inactivation kinetics. Foods, 6: 107.
Coroller L., Leguerinel I., Mettler E., Savy N., Mafart P. (2006): General model, based on two mixed Weibull distributions of bacterial resistance, for describing various shapes of inactivation curves. Applied and Environmental Microbiology, 72: 6493–6502.
Daryaei H., Peñaloza W., Hildebrandt I., Krishnamurthy K., Thiruvengadam P., Wan J. (2018): Heat inactivation of Shiga toxin-producing Escherichia coli in a selection of low moisture foods. Food Control, 85: 48–56.
den Besten M.W.H., Berendsen E.M., Wells-Bennik M.H.J., Straatsma H., Zwietering M.H. (2017): Two coplementary approaches to quantify variability in heat resistance of spores of Bacillus subtilis. International Journal of Food Microbiology, 253: 48–53.
den Besten H.M.W., Wells-Bennik M.H.J., Zwietering M.H. (2018): Natural diversity in heat resistance of bacteria and bacterial Spores: Impact on food safety and quality. Annual Review of Food Science and Technology, 9: 383–410.
Dewanti-Hariyadi R., Hadiyanto J., Purnomo E.H. (2011): Thermal resistance of local isolates of Staphylococcus aureus. Asian Journal Food Agro-Industry, 4: 213–221.
EN ISO 6888-1 (2001): Microbiology of food and animal feeding stuffs. horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species). Part 1: Technique using Baird-Parker agar medium. Geneva: International Organization of Standardization.
Garre A., Zwietering M., den Besten H.M.W. (2020): Multilevel modelling as a tool to include variability and uncertainty in quantitative microbiology and risk assessment. Thermal inactivation of Listeria monocytogenes as proof of concept. Food Research International, 137: 109374.
Geeraerd A.H., Valdramidis V.P., Van Impe J.F. (2005): GInaFIT, a freeware tool to assess non-log-linear microbial survivor curves. International Journal of Microbiology, 102: 95–105.
Huang L. (2017): IPMP Global Fit – A one-step direct data analysis tool for predictive. International Journal of Food Microbiology, 262: 38–48.
Kennedy J., Blair I.S., McDowell D.A., Bolton D.J. (2005): An investigation of the thermal inactivation of Staphylococcus aureus and the potential for increased thermotolerance as a result of chilled storage. Journal of Applied Microbiology, 99: 1229–1235.
Lehotová V., Urgelová K., Valík Ľ., Medveďov, A. (2018): Survival dynamics of E. coli and S. aureus depending on environmental conditions. In: 18th National Cheese Competition and Cheese and Milk Conference, January, 2018, Prague, Czech Republic: 25–30. (in Czech)
Mafart P., Couvert O., Gaillard S., Leguerinel I. (2002): On calculating sterility in thermal preservation methods: Application of the Weibull frequency distribution model. International Journal of Food Microbiology, 72: 107–113.
Medveďová A., Koňuchová M., Kvočiková K., Hatalová I., Valík Ľ. (2020): Effect of lactic acid bacteria addition on the microbiological safety of pasta-filata types of cheeses. Frontiers in Microbiology, 11: article 612528.
Metselaar K.I., den Besten H.M.W., Abee T., Moezelaar R., Zwietering M. (2013): Isolation and quantification of highly acid resistant variants of Listeria monocytogenes. International Journal of Food Microbiology, 166: 508–514.
Montanari C., Serrazanetti D.I., Felis G., Torriani S., Tabanelli G., Lanciotti R., Gardini F. (2015): New insights in thermal resistance of staphylococcal strains belonging to the species Staphylococcus epidermidis, Staphylococcus lugdunensis and Staphylococcus aureus. Food Control, 50: 605–612.
Pereira V., Lopes C., Castro A., Silva J., Gibbs P., Teixerira T. (2009): Characterization for enterotoxin production, virulence factors, and antibiotic susceptibility of Staphylococcus aureus isolates from various foods in Portugal. Food Microbiology, 26 : 278–282.
Samelis J., Kakouri A., Kondyli E., Pappa E. (2019): Effects of curd heating with or without previous milk pasteurisation on the microbiological quality and safety of craft-made ‘Pasta Filata’ Kashkaval cheese curds. International Journal of Dairy Technology, 72: 447–455.
Shebuski J.R., Vilhelmsson O., Miller K.J. (2000): Effects of growth at low water activity on thermal tolerance of Staphylococcus aureus. Journal of Food Protection, 63: 1277–1281.
Šipošová P., Lehotová V., Valík Ľ., Medveďová A. (2000): Microbiological quality assessment of raw milk from a vending machine and of traditional Slovakian pasta filata cheeses. Journal of Food and Nutrition Research, 59: 272–279.
Valdramidis V.P., Geeraerd A.H., Bernaerts K., Van Impe J.F.M. (2008): Identification of non-linear microbial inactivation kinetics under dynamic conditions. International Journal of Food Microbiology, 128: 146–152.
Van Impe J., Smet C., Tiwari B., Greiner R., Ojha S., Stulić V., Vukušić T., Režek Jambrak A. (2018): State of the Art of Nonthermal and Thermal Processing for Inactivation of Micro-organisms. Journal of Applied Microbiology, 125: 16–35.
Zhang L., Kou X., Zhang S., Cheng T., Wang S. (2018): Effect of water activity and heating rate on Staphylococcus aureus heat resistance in walnut shells. International Journal of Food Microbiology, 266: 282–288.
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti