Nine-year statistics of Czech honey carbohydrate profiles in the Czech Republic

https://doi.org/10.17221/213/2021-CJFSCitation:

Čížková H., Titěra D., Hrabec P., Pospiech M. (2022): Nine-year statistics of Czech honey carbohydrate profiles in the Czech Republic. Czech. J. Food Sci., 40: 85–92.

download PDF

Honey is composed mainly of carbohydrates which are represented by mono-, di-, tri-, tetra-, pentasaccharides, and oligosaccharides. The content and proportions of individual carbohydrates reveal information about the origin and technological properties of honey. A total of 5 987 samples of natural honeys originating from the Czech Republic and harvested during a period of nine consecutive years were analysed to research their carbohydrate content, sum of fructose and glucose (Fru + Glc), fructose and glucose ratio (Fru/Glc), and electrical conductivity (Ec). Monosaccharides, melezitose (Mel), and Ec varied according to the source of nectar or honeydew. Sucrose (Suc) content was low 0.87 ± 1.26 g (100 g)–1 and did not exceed 15 g (100 g)–1.

References:
Acquarone C., Buera P., Elizalde B. (2007): Pattern of pH and electrical conductivity upon honey dilution as a complementary tool for discriminating geographical origin of honeys. Food Chemistry, 101: 695–703. https://doi.org/10.1016/j.foodchem.2006.01.058
 
Bogdanov S. (2009) Harmonised Methods of the International Honey Commission. International Honey Commission. Available at https://www.ihc-platform.net/ihcmethods2009.pdf (accessed Aug 8, 2021).
 
Bogdanov S., Jurendic T., Sieber R., Gallmann P. (2008): Honey for nutrition and health: A review. Journal of the American College of Nutrition, 27: 677–689. https://doi.org/10.1080/07315724.2008.10719745
 
Bogdanov S., Ruoff K., Persano Oddo L. (2004): Physico-chemical methods for the characterisation of unifloral honeys: A review. Apidologie, 35: S4–S17. https://doi.org/10.1051/apido:2004047
 
Cavia M.M., Fernández-Muio M.A., Gömez-Alonso E., Montes-Pérez M.J., Huidobro J.F., Sancho M.T. (2002): Evolution of fructose and glucose in honey over one year: Influence of induced granulation. Food Chemistry, 78: 157–161. https://doi.org/10.1016/S0308-8146(01)00393-4
 
Horváth K., Molnár-Perl I. (1997): Simultaneous quantitation of mono-, di- and trisaccharides as their TMS ether oxime derivatives by GC-MS: I. In model solutions. Chromatographia, 45: 328–335. https://doi.org/10.1007/BF02505579
 
Kaškonienė V., Venskutonis P.R., Čeksteryte V. (2010): Carbohydrate composition and electrical conductivity of different origin honeys from Lithuania. LWT – Food Science and Technology, 43: 801–807. https://doi.org/10.1016/j.lwt.2010.01.007
 
Kaškonienė V., Venskutonis P.R. (2010): Floral markers in honey of various botanical and geographic origins: A review. Comprehensive Reviews in Food Science and Food Safety, 9: 620–634. https://doi.org/10.1111/j.1541-4337.2010.00130.x
 
de la Fuente E., Sanz M.L., Martínez-Castro I., Sanz J., Ruiz-Matute A.I. (2007): Volatile and carbohydrate composition of rare unifloral honeys from Spain. Food Chemistry, 105: 84–93. https://doi.org/10.1016/j.foodchem.2007.03.039
 
Machado De-Melo A.A., de Almeida-Muradian L.B., Sancho M.T., Pascual-Maté A. (2018): Composition and properties of Apis mellifera honey: A review. Journal of Apicultural Research, 57: 5–37. https://doi.org/10.1080/00218839.2017.1338444
 
Pauliuc D., Dranca F., Oroian M. (2020): Antioxidant activity, total phenolic content, individual phenolics and physicochemical parameters suitability for Romanian honey authentication. Foods, 9: 306. https://doi.org/10.3390/foods9030306
 
Persano Oddo L., Piana L., Bogdanov S., Bentabol A., Gotsiou P., Kerkvliet J., Martin P., Morlot M., Ortiz Valbuena A., Ruoff K., von der Ohe K. (2004): Botanical species giving unifloral honey in Europe. Apidologie, 35: S82–S93. https://doi.org/10.1051/apido:2004045
 
Persano Oddo L., Piro R. (2004): Main European unifloral honeys: Descriptive sheets. Apidologie, 35: S38–S81. https://doi.org/10.1051/apido:2004049
 
Pierre J., Mesquida J., Marilleau R., Pham-Delègue M.H., Renard M. (1999): Nectar secretion in winter oilseed rape, Brassica napus – Quantitative and qualitative variability among 71 genotypes. Plant Breeding, 118: 471–476. https://doi.org/10.1046/j.1439-0523.1999.00421.x
 
Pita-Calvo C., Azquez M.V. (2017): Differences between honeydew and blossom honeys: A review. Trends in Food Science & Technology, 59: 79–87.
 
Pita-Calvo C., Vázquez M. (2018): Honeydew honeys: A review on the characterization and authentication of botanical and geographical origins. Journal of Agricultural and Food Chemistry, 66: 2523–2537. https://doi.org/10.1021/acs.jafc.7b05807
 
Pospiech M., Javůrková Z., Hrabec P., Čížková H., Titěra D., Štarha P., Ljasovská S., Kružík V., Podskalská T., Bednář J., Burešová P.K., Tremlová B. (2021): Physico-chemical and melissopalynological characterization of Czech honey. Applied Sciences, 11: 4989. https://doi.org/10.3390/app11114989
 
Rodríguez-Flores M.S., Escuredo O., Seijo-Rodríguez A., Seijo M.C. (2019): Characterization of the honey produced in heather communities (NW Spain). Journal of Apicultural Research, 58: 84–91. https://doi.org/10.1080/00218839.2018.1495417
 
Rodríguez-Flores S., Escuredo O., Seijo M.C. (2016): Characterisation and antioxidant capacity of sweet chestnut honey produced in north-west Spain. Journal of Apicultural Science, 60: 19–30. https://doi.org/10.1515/jas-2016-0002
 
Rybak-Chmielewska H., Szczesna T., Waś E., Jaśkiewicz K., Teper D. (2013): Characteristics of Polish unifloral honeys. IV. Honeydew honey, mainly Abies alba L. Journal of Apicultural Science, 57: 51–59. https://doi.org/10.2478/jas-2013-0006
 
Sanz M.L., Gonzalez M., De Lorenzo C., Sanz J., Martínez-Castro I. (2005): A contribution to the differentiation between nectar honey and honeydew honey. Food Chemistry, 91: 313–317. https://doi.org/10.1016/j.foodchem.2004.06.013
 
Seijo M.C., Escuredo O., Rodríguez-Flores M.S. (2019): Physicochemical properties and pollen profile of oak honeydew and evergreen oak honeydew honeys from Spain: A comparative study. Foods, 8: 1–14. https://doi.org/10.3390/foods8040126
 
Shaaban B., Seeburger V., Schroeder A., Lohaus G. (2020): Sugar, amino acid and inorganic ion profiling of the honeydew from different hemipteran species feeding on Abies alba and Picea abies. PLoS ONE, 15: 1–17. https://doi.org/10.1371/journal.pone.0228171
 
Terrab A., Recamales A.F., Hernanz D., Heredia F.J. (2004): Characterisation of Spanish thyme honeys by their physicochemical characteristics and mineral contents. Food Chemistry, 88: 537–542. https://doi.org/10.1016/j.foodchem.2004.01.068
 
Thrasyvoulou A., Tananaki C., Goras G., Karazafiris E., Dimou M., Liolios V., Kanelis D., Gounari S. (2018): Legislation of honey criteria and standards. Journal of Apicultural Research, 57: 88–96. https://doi.org/10.1080/00218839.2017.1411181
 
Tomczyk M., Tarapatskyy M., Dżugan M. (2019): The influence of geographical origin on honey composition studied by Polish and Slovak honeys. Czech Journal of Food Sciences, 37: 232–238. https://doi.org/10.17221/40/2019-CJFS
 
Vranić D., Petronijević R., Dinović Stojanović J., Korićanac V., Babić Milijašević J., Milijašević M. (2017): Physicochemical properties of honey from Serbia in the period 2014–2016. IOP Conference Series: Earth and Environmental Science, 85: 012058. https://doi.org/10.1088/1755-1315/85/1/012058
 
Yadata D. (2014): Detection of the electrical conductivity and acidity of honey from different areas of Tepi. Food Science and Technology, 2: 59–63. https://doi.org/10.13189/fst.2014.020501
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti