Methods for suppressing Fusarium infection during malting and their effect on malt quality

Ng C.A., Poštulková M., Matoulková D., Psota V., Hartman I., Branyik T. (2021): Methods for suppressing Fusarium infection during malting and their effect on malt quality. Czech J. Food Sci., 39: 340–359.

download PDF

The incidence of Fusarium head blight (FHB) in cereal grains such as barley and wheat is of growing concern due to climate change threatening food safety. Further processing of cereals by malting provides an ideal environment for the growth of Fusarium, leading to food safety concerns due to the production of mycotoxins, production challenges with the negative effects to malt and beer qualities, and economic loss owing to the field yield reduction. To improve food safety and product quality, different methods of fungal control have been investigated and reported in the literature. Traditional methods to control fungal growth and mycotoxin production have included chemical and physical methods, but these treatments led to worsened malt properties, limiting their applicability to the brewing industry. Biological control methods have, therefore, attracted wide interest as alternative treatments due to their ability to limit Fusarium growth and mycotoxin production in malting cereals without toxic by-products, thus exhibiting promise for improving food safety. Various biological agents have been investigated and applied in malting and have shown the potential to suppress Fusarium spp. growth and mycotoxin production. These agents include several lactic acid bacterial (LAB) species and Geotrichum candidum. Another promising biocontrol agent for malting control is Pythium oligandrum, which has successfully limited Fusarium infection in other agricultural crops. The review outlines the Fusarium-control methods reported referenced for the brewing industry and the present prospects in biological control applications on the promise of P. oligandrum as a novel agent for malting.

Agriopoulou S., Stamatelopoulou E., Varzakas T. (2020): Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods, 9: 137.
Allen B., Wu J., Doan H. (2003): Inactivation of fungi associated with barley grain by gaseous ozone. Journal of Environmental Science and Health, Part B, 38: 617–630.
Al-Rawahi A.K., Hancock J.G. (1998): Parasitism and biological control of Verticillium dahlia by Pythium oligandrum. Plant Diseases, 82: 1100–1106.
Anderson H.E., Santos I.C., Hildenbrand Z.L., Schug K.A. (2019): A review of the analytical methods used for beer ingredients and finished product analysis and quality control. Analytical Chimica Acta, 1085: 1–20.
Ayed F., Daami-Remadi M., Jabnoun-Khiareddine H., El Mahjoub M. (2007): In vitro and in vivo evaluation of some biofungicides for potato Fusarium wilt biocontrol. International Journal of Agricultural Research, 2: 282–288.
Bartkiene E., Bartkevics V., Lele V., Pugajeva I., Zavista-naviciute P., Mickiene R., Zadeike D., Juodeikiene G. (2018): A concept of mould spoilage prevention and acrylamide reduction in wheat bread: Application of lactobacilli in combination with a cranberry coating. Food Control, 91: 284–293.
Beccari G., Prodi A., Tini F., Bonciarelli U., Onofri A., Oueslati S., Limayma M., Covarelli L. (2017): Changes in the Fusarium head blight complex of malting barley in a three-year field experiment in Italy. Toxins, 9: 120.
Benhamou N., Belanger R.R., Rey P., Tirilly Y. (2001): Oligandrin, the elicitin-like protein produced by Pythium oligandrum, induces systemic resistance to Fusarium crown and root rot in tomato plants. Plant Physiology and Biochemistry, 39: 681–698.
Benhamou N., Rey P., Picard K., Tirilly Y. (1999): Ultrastructure and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens. Phytopathology, 89: 506–517.
Berthiller F., Crews C., Dall'Asta C., De Daeger S., Haesaert G., Karlovsky P., Oswald I.P., Seefelder W., Speijers G., Stroka J. (2013). Masked mycotoxins: A review. Molecular Nutrition & Food Research, 57: 165–186.
Boivin P., Malanda M. (1999): United States of America Patent No. 5 955 070.
Boeira L., Bryce J., Stewart G., Flannigan B. (2002): Influence of cultural conditions on sensitivity of brewing yeasts growth to Fusarium mycotoxins zearalenone, deoxynivalenol and fumonisin B1. International Biodeterioration & Biodegradation, 50: 69–81.
Boutroua R., Guéguen M. (2005): Interests in Geotrichum candidum for cheese technology. International Journal of Food Microbiology, 102: 1–20.
Calado T., Venâncio A., Abrunhosa L. (2014): Irradiation for mold and mycotoxin control: A review. Comprehensive Reviews in Food Science and Food Safety, 13: 1049–1061.
Contreras-Jiménez B., Del Real A., Millan-Malo B.M., Gaytán-Martínez M., Morales-Sánchez E., Rodríguez-García M.E. (2017): Physiochemical changes in barley starch during malting. Journal of the Institute of Brewing, 125: 10–17.
Corsetti A., Gobbetti M., Rossi J., Damiani P. (1998): Antimould activity of sourdough lactic acid bacteria: Identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Applied Microbiology and Biotechnology, 50: 253–256.
Dalié D.K.D., Deschamps A.M., Richard-Forget F. (2010): Lactic acid bacteria – Potential for control of mould growth and mycotoxins: A review. Food Control, 21: 370–380.
Dodd J.G., Vegi A., Vashisht A., Tobias D., Schwarz P., Wolf-Hall C.E. (2011): Effect of ozone treatment on the safety and quality of malting barley. Journal of Food Protection, 74: 2134–2141.
European Commission (2017): Risk to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA Journal, 15: 4718.
Evans D.E., Redd K., Haraysmow S.E., Elvig N., Metz N., Koutoulis A. (2014): The influence of malt quality on malt brewing and barley quality on barley brewing with Ondea Pro, compared by small-scale analysis. Journal of the American Society of Brewing Chemists, 72: 192–207.
Feizollahi E., Roopesh M.S. (2021): Mechanisms of deoxynivalenol (DON) degradation during different treatments: A review. Critical Reviews in Food Science and Nutrition, 64: 1–24.
Freire L., Sant'Ana A.S. (2018): Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food and Chemical Toxicology, 111: 189–205.
Foszczyńska B., Dziuba E., Stempniewicz R. (2004): The use of Geotrichum candidum starter culture for protection of barley and its influence on biotechnological qualities of malt. Electronic Journal of Polish Agricultural Universities, 7: 04.
Garmendia G., Pattarino L., Negrín C., Martínez-Silveira A., Pereyra S., Ward T., Vero S. (2018): Species composition, toxigenic potential and aggressiveness of Fusarium isolates causing head blight of barley in Uruguay. Food Microbiology, 76: 426–433.
Geissinger C., Hofer K., Habler K., Hess M., Hückelhoven R., Rychlik M., Becker T., Gastl M. (2017): Fusarium species on barley malt: Is visual assessment an appropriate tool for detection? Cereal Chemistry, 94: 659–669.
Habler K., Geissinger C., Hofer K., Schüler J., Moghari S., Hess M., Gastl M., Rychlik M. (2017): Fate of Fusarium toxins during brewing. Journal of Agricultural and Food Chemistry, 65: 190–198.
Habler K., Moghari S., Rychlik M. (2018): Analysis of Fusarium toxins in single barley malt kernels. Journal of Analysis and Testing, 2: 124–137.
Habschied K., Krska R., Sulyok M., Šarkanj B., Krstanović V., Lalić A., Šimić G., Mastanjević K. (2019): Screening of various metabolites in six barley varieties grown under natural climatic conditions (2016–2018). Microorganisms, 7: 532.
Hofer K., Geissinger C., König C., Gastl M., Hückelhoven R., Hess M., Coleman A.D. (2016): Influence of Fusarium isolates on the expression of barley genes related to plant defense and malting quality. Journal of Cereal Science, 69: 17–24.
Hofer K., Hückelhoven R., Hess M. (2019): Analysis of archive samples of spring and winter barley support an increase in individual Fusarium species in Bavarian barley grain over the last decades. Journal of Plant Diseases and Protection, 126: 247–254.
Horackova S., Novakova T., Slukova M., Bialasova K., Kumherova M., Plockova M. (2018): Antifungal activity of selected lactobacilli intended for sourdough production. Applied Food Biotechnology, 5: 213–220.
Hrubošová D., Vytřasová J., Brožková I. (2015): Production of T-2 toxin and deoxynivalenol in the presence of different disinfectants. Potravinarsto, 9: 18–23.
Hückelhoven R., Hofer K., Coleman A., Hess M. (2018): Fusarium infection of malting barley has to be managed over the entire value chain. Journal of Plant Diseases and Protection, 125: 1–4.
Ikeda S., Shimizu A., Shimizu M., Takahashi H., Takenaka S. (2012): Biocontrol of black scurf on potato by seed tuber treatment with Pythium oligandrum. Biological Control, 60: 297–304.
Iwase C.H.T., Piacentini K.C., Giomo P.P., Čumová M., Wawroszová S., Běláková S., Minella E., Rocha L.O. (2020): Characterization of the Fusarium sambucinum species complex and detection of multiple mycotoxins in Brazilian barley samples. Food Research International, 136: 109336.
Janssen E., Liu C., Van der Fels-Klerx H. (2018): Fusarium infection and trichothecenes in barley and its comparison with wheat. World Mycotoxin Journal, 11: 33–46.
Jestoi M.N., Paavanen-Huhtala S., Parikka P., Yli-Mattila T. (2008): In vitro and in vivo mycotoxin production of Fusarium species isolated from Finnish grains. Archives of Phytopathology and Plant Protection, 41: 545–558.
Jin Z., Gillespie J., Barr J., Wiersma J.J., Sorrells M.E., Zwinger S., Gross T., Cumming J., Bergstrom G.C., Brueggeman R., Horsley R.D., Schwarz P.B. (2018): Malting of Fusarium head blight-infected rye (Secale cereale): Growth of Fusarium graminearum, trichothecene production, and the impact on malt quality. Toxins, 10: 369.
Jukonyte R., Zadeike D., Bartkiene E., Lele V., Cernaukas D., Suproniene S., Juodeikiene G. (2018): A potential of brown rice polish as a substrate for the lactic acid and bioactive compounds production by lactic acid bacteria newly isolated from cereal-based fermented products. LWT – Food Science and Technology, 87: 323–331.
Juodeikiene G., Bartkiene E., Cernauskas D., Cizeikiene D., Zadeike D., Lele V., Bartkevics V. (2018): Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. LWT – Food Science and Technology, 89: 307–314.
Khalesi M., Deckers S., Riveros-Galan D., Gebruers K., Derdelinckx G. (2015): Upgraded model of primary gushing: From nanobubble formation until liquid expulsion. Journal of the American Society of Brewing Chemists, 73: 343–346.
Kharazian Z.A., Aghdasi M., Jouzan G.S., Zamani M. (2017): Effects of Fusarium verticilliodes and Lactobacillus strains inoculation of growth and antioxidant enzyme activity of Zea mays plants. Journal of Horticultural Research, 5: 67–74.
Kottapalli B., Wolf-Hall C.E. (2008): Effect of hot water treatments on the safety and quality of Fusarium-infected malting barley. International Journal of Food Microbiology, 124: 171–178.
Kottapalli B., Wolf-Hall C.E., Schwarz P. (2005): Evaluation of gaseous ozone and hydrogen peroxide treatments for reducing Fusarium survival in malting barley. Journal of Food Protection, 68: 1236–1240.
Kottapalli B., Wolf-Hall C.E., Schwarz P. (2006): Effect of electron-beam irradiation on the safety and quality of Fusarium-infected malting barley. International Journal of Food Microbiology, 110: 224–231.
Kottapalli B., Wolf-Hall C.E., Schwarz P., Schwarz J., Gillespie J. (2003): Evaluation of hot water and electron beam irradiation for reducing Fusarium infection in malting barley. Journal of Food Protection, 66: 1241–1246.
Ksieniewicz-Woźniak E., Bryła M., Waśkiewicz A., Yoshinari T., Szymczyk K. (2019): Selected trichothecenes in barley malt and beer from Poland and an assessment of dietary risks associated with their consumption. Toxins, 11: 715.
Laitila A., Alakomi H.L., Mattila-Sandholm T., Haikara A. (2002): Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting barley. Journal of Applied Microbiology, 93: 566–576.
Laitila A., Sarlin T., Kotaviita E., Huttunen T., Home S., Wilhelmson A. (2007): Yeast isolated from industrial maltings can suppress Fusarium growth and formation of gushing factors. Journal of Industrial Microbiology and Biotechnology, 34: 701–713.
Laitila A., Sarlin T., Raulio M., Wilhelmson A., Kotaviita E., Huttunen T., Juvonen R. (2011): Yeast in malting, with special emphasis on Wicherhamomyces anomalus. Antonie van Leeuwenhoek, 99: 75–84.
Laitila A., Sweins H., Vilpola A., Kotaviita E., Olkku J., Home S., Haikara A. (2006): Lactobacillus plantarum and Pediococcus pentosaceus starter cultures as a tool for microflora management in malting and enhancement of malt processability. Journal of Agricultural and Food Chemistry, 54: 3840–3851.
Lake J., Browers M., Yin X.S., Speers R.A. (2007). Use of sodium bisulfite as a method to reduce DON levels in barley during malting. Journal of the American Society of Brewing Chemists, 65: 172–176.
Lancova K., Hajslova J., Poustka J., Krplova A., Zachariasova M., Dostalek P., Sachambula L. (2008): Transfer of Fusarium mycotoxins and 'masked' deoxynivalenol (deoxynivalenol-3-glucoside) from field barley through malt to beer. Food Additives and Contaminants, 25: 732–744.
Langseth W., Bernhoft A., Runberget T., Kosiak B., Gareis M. (1999): Mycotoxin production and cytotoxicity of Fusarium strains isolated from Norwegian cereals. Mycopathologia, 144: 103–113.
Linkmeyer A., Hofer K., Rychlik M., Herz M., Hausladen H., Hückelhoven R., Hess M. (2016): Influence of inoculum and climatic factors on the severity of Fusarium head blight in German spring and winter barley. Food Additives and Contaminants: Part A, 33: 489–499.
Liske R.B., Niessen L., Vogel R.F. (2000): Potential of lactic acid bacteria to reduce the growth of Fusarium culmorum in the malting process. Mycotoxin Research, 16: 62–65.
Lowe D.P., Arendt E.K. (2004): The use and effects of lactic acid bacteria in malting and brewing with their relationship to antifungal activity, mycotoxins and gushing: A review. Journal of the Institute of Brewing, 110: 163–180.
Lowe D.P., Arendt E.K., Soriano A.M., Ulmer H.M. (2005): The influence of lactic acid bacteria on the quality of malt. Journal of the Institute of Brewing, 111: 42–50.
Lowe D.P., Ulmer H.M., Graser K., Arendt E.K. (2006): The influence of starter cultures on barley contaminated with Fusarium culmorum TMW 4.0754. Journal of the American Society of Brewing Chemists, 64: 157–165.
Madgwick J.W., West J.S., White R.P., Semenov M.A., Townsend J.A., Turner J.A., Fitt B.D.L. (2011): Impacts of climate change on wheat anthesis and Fusarium war blight in the UK. European Journal of Plant Pathology, 130: 117–131.
Malachova A., Cerkal R., Ehrenbergerova J., Dzuman Z., Vaculova K., Hajslova J. (2010): Fusarium mycotoxins in various barley cultivars and their transfer into malt. Journal of the Science of Food and Agriculture, 90: 2495–2505.
Mallmann C., Dilkin P., Mallmann A., Oliveira M., Adaniya Z., Tonini C. (2017): Prevalence and levels of deoxynivalenol and zearalenone in commercial barley and wheat grain produced in Southern Brazil: An eight-year (2008 to 2015) summary. Tropical Plant Pathology, 42: 146–152.
Marin S., Ramos A.J., Cano-Sancho G., Sanchis V. (2013): Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, 60: 218–237.
Mastanjević K., Krstanović V., Lukinac J., Mastanjević K. (2018): Impact of Fusarium infection and fungicide treatment on wheat malt wort quality. Journal of the Institute of Brewing, 124: 204–208.
Mauch A., Dal Bello F., Coffey Z., Arendt E.K. (2010): The use of Lactobacillus brevis PS1 to in vitro inhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. International Journal of Food Microbiology, 141: 116–121.
McKee G., Cowger C., Dill-Macky R., Friskop A., Gautam P., Ransom J., Wilson W. (2019): Disease management and estimated effects on DON (deoxynivalenol) contamination in Fusarium infested barley. Agriculture, 9: 155.
Moretti A., Pascale M., Logrieco A.F. (2019): Mycotoxin risks under a climate change scenario in Europe. Trends in Food Science & Technology, 84: 38–40.
Munkvold G. (2017): Fusarium species and their associated mycotoxins. Methods in Molecular Biology, 1542: 51–106.
Munkvold G.P., Arias S., Taschl I., Gruber-Dorninger C. (2019): Mycotoxins in corn: Occurrence, impacts, and management. In: Serna-Saldivar S.O. (ed.): Corn. 3rd Ed. Place of Publisher, Woodhead Publishing and AACC International Press: 235–287.
Munkvold G.P., Proctor R.H., Moretti A. (2021): Mycotoxin production in Fusarium according to contemporary species concepts. Annual Review of Phytopathology, 59: 373–402.
Nielsen L., Cook D., Edwards S., Ray R. (2014): The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK. International Journal of Food Microbiology, 179: 38–49.
Ng C.A., Pernica M., Yap J., Belakova S., Vaculova K., Branyik T. (2021): Biocontrol effect of Pythium oligandrum on artificial Fusarium culmorum infection during malting of wheat. Journal of Cereal Science, 100: 103258.
Nogueira M., Decundo J., Martinez M., Dieguez S., Moreyra F., Moreno M., Stenglein S. (2018): Natural contamination with mycotoxins produced by Fusarium graminearum and Fusarium poae in malting barley in Argentina. Toxins, 10: 78.
Oliveira P.M., Brosnan B., Furey A., Coffey A., Zannini E. (2015a): Lactic acid bacteria bioprotection applied to the malting process. Part I: Strain characterization and identification of antifungal compounds. Food Control, 51: 433–443.
Oliveira P.M., Zannini E., Arendt E.K. (2014): Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: From crop farming to cereal products. Food Microbiology, 37: 78–95.
Oliveira P., Brosnan B., Jacob F., Furey A., Coffey A., Zannini E., Arendt E.K. (2015b): Lactic acid bacteria bioprotection applied to the malting process. Part II: Substrate impact and mycotoxin reduction. Food Control, 51: 444–452.
Oliveira P., Mauch A., Jacob F., Arendt E.K. (2012): Impact of Fusarium culmorum-infected barley malt grains on brewing and beer quality. Journal of the American Society of Brewing Chemists, 70: 186–194.
Parikka P., Hakala K., Tiilikkala K. (2012): Expected shifts in Fusarium species' composition on cereal grain in Northern Europe due to climatic change. Food Additives & Contaminants: Part A, 29: 1543–1555.
Paris M.P.K., Schweiger W., Hametner C., Stückler R., Muehlbauer G.J., Varga E., Krska R., Berthiller F., Adam G. (2014): Zearalenone-16-O-glucoside: A new masked mycotoxin. Journal of Agriculture and Food Chemistry, 62: 1181–1189.
Pascari X., Ramos A.J., Marín S., Sanchís V. (2018): Mycotoxins and beer. Impact of beer production process on mycotoxin contamination. A review. Food Research International, 103: 121–129.
Perczak A., Goliński P., Bryła M., Waśkiewicz A. (2018): The efficiency of lactic acid bacteria against pathogenic fungi and mycotoxins. Arhiv za Higijenu Rada i Toksikologiju, 69: 32–45.
Peyer L.C., Axel C., Lynch K.M., Zannini E., Jacob F., Arendt E.K. (2016): Inhibition of Fusarium culmorum by carboxylic acid release from lactic acid bacteria in a barley malt substrate. Food Control, 69: 227–236.
Piacentini K., Běláková S., Benešova K., Pernica M., Savi G., Rocha L., Hartman I., Čáslavský J., Corrêa B. (2019a): Fusarium mycotoxins stability during the malting and brewing process. Toxins, 11: 257.
Piacentini K., Rocha L., Savi G., Carnielli-Queiroz L., Fontes L., Correa B. (2019b): Assessment of toxigenic Fusarium species and their mycotoxins in brewing barley grains. Toxins, 11: 31.
Piegza M., Witkowska D., Stempniewicz R. (2014): Enzymatic and molecular characteristics of Geotrichum candidum strains as starter culture for malting. Journal of the Institute of Brewing, 120: 341–346.
Piegza M., Witkowska D., Stempniewicz R., Rywińska A. (2005): Geotrichum candidum activity in milled malt and barley medium. Electronic Journal of Polish Agricultural Universities, 8: 15.
Postulkova M., Rezanina J., Fiala J., Ruzicka M.C., Dostalek P., Branyik T. (2018): Suppression of fungal contamination by Pythium oligandrum during malting of barley. Journal of the Institute of Brewing, 124: 336–340.
Postulkova M., Riveros-Galan D., Cordova-Aguilar K., Zitkova K., Verachtert H., Derdelinckx G., Dostalek P., Ruzicka M.C., Branyik T. (2016): Technological possibilities to prevent and suppress primary gushing of beer. Trends in Food Science & Technology, 49: 64–73.
Ramakrishna N., Lacey J., Smith J.E. (1991): Effect of surface sterilization, fumigation and gamma irradiation on the microflora and germination of barley seeds. International Journal of Food Microbiology, 13: 47–54.
Polišenská A., Vaculová K., Jirsa O., Sedláčhová I., Frydrych J. (2019): Yield and quality of two hulless barley varieties after inoculation with Fusarium culmorum. Kvasný Průmysl, 65: 17–22.
Psota V., Kosař K. (2002): Malting quality index. Kvasný Průmysl, 48: 142–148.
Psota V., Musilová M. (2020): System for the evaluation of malting quality of wheat varieties. Kvasný Průmysl, 66: 232–238.
Rood L., Koutoulis A., Bowman J.P., Evans D.E., Stanley R.A., Kaur M. (2018): Control of microbes on barley grains using peracetic acid and electrolyzed water as antimicrobial agents. Food Microbiology, 76: 103–109.
Rouse S., van Sinderen D. (2008): Bioprotective potential of lactic acid bacteria in malting and brewing. Journal of Food Protection, 71: 1724–1733.
Russo P., Arena M.P., Fiocco D., Capozzi V., Drider D., Spano G. (2017): Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. International Journal of Food Microbiology, 247: 48–54.
Sarlin T., Laitila A., Pekkarinen A., Haikara A. (2005): Effects of three Fusarium species on the quality of barley and malt. Journal of the American Society of Brewing Chemists, 63: 43–49.
Sarlin T., Vilpola A., Kotaviita E., Olkku J., Haikara A. (2007): Fungal hydrophobins in the barley-to-beer chain. Journal of the Institute of Brewing, 113: 147–153.
Savi G.D., Piacentini K.C., Bittencourt K.O., Scussel V.M. (2014): Ozone treatment efficiency on Fusarium graminearum and deoxynivalenol degradation and its effects on whole wheat grains (Triticum aestivum L.) quality and germination. Journal of Stored Product Research, 59: 245–253.
Schapira S.F.D., Whithehead M.P., Flannigan B. (1989): Effects of the mycotoxin diacetoxyscripenol and deoxynivalenol on malting characteristics of barley. Journal of the Institute of Brewing, 95: 415–417.
Schmidt M., Lynch K.M., Zannini E., Arendt E.K. (2018): Fundamental study on the improvement of the antifungal activity of Lactobacillus reuteri R29 through increased production of phenyllactic acid and reuterin. Food Control, 88: 139–148.
Schwarz P.B., Beattie S., Casper H.H. (1996): Relationship between Fusarium infestation of barley and the gushing potential of malt. Journal of the Institute of Brewing, 102: 93–96.
Schwarz P.B., Casper H.H., Beattie S. (1995): Fate and development of naturally occurring Fusarium mycotoxins during malting and brewing. Journal of the American Society of Brewing Chemists, 53: 121–127.
Schwarz P.B., Horsley R.D., Steffenson B.J., Salas B., Barr J.M. (2006): Quality risks associated with the utilization of Fusarium head blight infected malting barley. Journal of the American Society of Brewing Chemists, 64: 1–7.
Shephard G. (2011): Fusarium mycotoxins and human health. Plant Breeding Science, 64: 113–121.
Shokribousjein Z., Deckers S.M., Gebrues K., Lorgouilloux Y., Baggerman G., Verachtert H., Delcour J.A., Etirnnr P., Rock J.M., Michiels C., Derdelincks G. (2011): Hydrophobins, beer foaming and gushing. Cerevisia, 35: 85–101.
Shokribousjein Z., Philippaerts A., Riveros D., Titze J., Ford Y., Deckers S.M., Khalesi M., Delcour J.A., Gebruers K., Verachtert H., Ilberg V., Derdelinckx G., Sels B. (2014): A curative method for primary gushing of beer and carbonated beverages: Characterization and application of antifoam based hop oils. Journal of the American Society of Brewing Chemist, 72: 12–21.
Sobrova P., Adam V., Vasatkova A., Beklova M., Zeman L., Kizek R. (2009): Deoxynivalenol and its toxicity. Interdisciplinary Toxicology, 3: 94–99.
Song Y., Linderholm H.W., Wang C., Tian J., Huo Z., Gao P., Song Y., Guo A. (2019): The influence of excess precipitation on winter wheat under climate change in China from 1961 to 2017. Science of the Total Environment, 690: 189–196.
Spanic V., Marcek T., Abicic I., Sarkanj B. (2017): Effect of Fusarium head blight on wheat grain and malt infected by Fusarium culmorum. Toxins, 10: 17.
Spanic V., Zdunic Z., Drezner G., Sarkanj B. (2019): The pressure of Fusarium disease and its relation with mycotoxins in the wheat grain and malt. Toxins, 11: 198.
Takenaka S. (2015): Studies on biological control mechanisms of Pythium oligandrum. Journal of General Plant Pathology, 81: 466–469.
Tima H., Brückner A., Mohácsi-Farkas C., Kiskó G. (2016): Fusarium mycotoxins in cereals harvested from Hungarian fields. Food Additives & Contaminants: Part B, 9: 127–131.
Timmusk S., Nevo E., Ayele F., Noe S., Niinemets Ü. (2020): Fighting Fusarium pathogens in the era of climate change: A conceptual approach. Pathogens, 9: 419.
Tiwari B.K., Brennan C.S., Curran T., Gallagher E., Cullen P.J., O'Donnell C.P. (2010): Application of ozone in grain processing. Journal of Cereal Science, 51: 248–255.
U.S. FDA (2010): Guidance for Industry and FDA: Advisory Levels for Deoxynivalenol (DON) in Finished Wheat Products for Human Consumption and Grains and Grain By-products Used for Animal Feed. U.S. Food and Drug Administration. Available at (accessed Sept 8, 2020).
Van Nierop S.N.E., Rautenbach M., Axcell B.C., Cantrell I.C. (2006): The impact of microorganisms on barley and malt quality – A review. Journal of the American Society of Brewing Chemists, 64: 69–78.
Vaughan M., Backhouse D., Del Ponte E.M. (2016). Climate change impact on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: A review. World Mycotoxin Journal, 9: 685–700.
Vijayakumar M., Ilavenil S., Kim D.H., Arasu M.V., Priya K., Choi K.C. (2015): In-vitro assessment of the probiotic potential of Lactobacillus plantarum KCC-24 isolated from Italian rye-grass (Lolium multiflorum). Anaerobe, 32: 90–97.
Wang H., Yan Y., Wang J., Zhang H., Qi W. (2012): Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. PLos ONE, 7: e29452.
Wenda-Piesik A., Lemańczyk G., Twaruźek M., Błajet-Kosicka A., Kazek M., Grajewski J. (2017): Fusarium head blight incidence and detection of Fusarium toxins in wheat in relation to agronomic factors. European Journal of Plant Pathology, 149: 515–531.
Wolf-Hall C.E. (2007): Mould and mycotoxin problems encountered during malting and brewing. International Journal of Food Microbiology, 119: 89–94.
Xue A., Chen Y., Seifert K., Guo W., Blackwell B., Harris L., Overy D. (2019): Prevalence of Fusarium species causing head blight of spring wheat, barley and oat in Ontario during 2001–2017. Canadian Journal of Plant Pathology, 41: 392–402.
Yacoub A., Gerbore J., Magnin N., Chambon P., Dufour M.C., Corio-Costet M.F., Guyoneaud R., Rey P. (2016): Ability of Pythium oligandrum strains to protect Vitis vinifera L. by inducing plant resistance against Phaeomoniella chlamydospore, a pathogen involved in Esca, a grapevine trunk disease. Biological Control, 92: 7–16.
Yépez A., Luz C., Meca G., Vignolo G., Mañes J., Aznar R. (2017): Biopreservation potential of lactic acid bacteria from Andean fermented food of vegetal origin. Food Control, 78: 393–400.
Zachariasova M., Vaclavikova M., Lacina O., Vaclavik L., Hajslova J. (2012): Deoxynivalenol oligoglycosides: New 'masked' Fusarium toxins occurring in malt, beer, and breadstuff. Journal of Agriculture and Food Chemistry, 60: 9280–9291.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti