Methods for suppressing Fusarium infection during malting and their effect on malt quality

https://doi.org/10.17221/221/2020-CJFSCitation:

Ng C.A., Poštulková M., Matoulková D., Psota V., Hartman I., Branyik T. (2021): Methods for suppressing Fusarium infection during malting and their effect on malt quality. Czech J. Food Sci., 39: 340–359.

download PDF

The incidence of Fusarium head blight (FHB) in cereal grains such as barley and wheat is of growing concern due to climate change threatening food safety. Further processing of cereals by malting provides an ideal environment for the growth of Fusarium, leading to food safety concerns due to the production of mycotoxins, production challenges with the negative effects to malt and beer qualities, and economic loss owing to the field yield reduction. To improve food safety and product quality, different methods of fungal control have been investigated and reported in the literature. Traditional methods to control fungal growth and mycotoxin production have included chemical and physical methods, but these treatments led to worsened malt properties, limiting their applicability to the brewing industry. Biological control methods have, therefore, attracted wide interest as alternative treatments due to their ability to limit Fusarium growth and mycotoxin production in malting cereals without toxic by-products, thus exhibiting promise for improving food safety. Various biological agents have been investigated and applied in malting and have shown the potential to suppress Fusarium spp. growth and mycotoxin production. These agents include several lactic acid bacterial (LAB) species and Geotrichum candidum. Another promising biocontrol agent for malting control is Pythium oligandrum, which has successfully limited Fusarium infection in other agricultural crops. The review outlines the Fusarium-control methods reported referenced for the brewing industry and the present prospects in biological control applications on the promise of P. oligandrum as a novel agent for malting.

References:
Agriopoulou S., Stamatelopoulou E., Varzakas T. (2020): Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods, 9: 137. https://doi.org/10.3390/foods9020137
 
Allen B., Wu J., Doan H. (2003): Inactivation of fungi associated with barley grain by gaseous ozone. Journal of Environmental Science and Health, Part B, 38: 617–630. https://doi.org/10.1081/PFC-120023519
 
Al-Rawahi A.K., Hancock J.G. (1998): Parasitism and biological control of Verticillium dahlia by Pythium oligandrum. Plant Diseases, 82: 1100–1106. https://doi.org/10.1094/PDIS.1998.82.10.1100
 
Anderson H.E., Santos I.C., Hildenbrand Z.L., Schug K.A. (2019): A review of the analytical methods used for beer ingredients and finished product analysis and quality control. Analytical Chimica Acta, 1085: 1–20. https://doi.org/10.1016/j.aca.2019.07.061
 
Ayed F., Daami-Remadi M., Jabnoun-Khiareddine H., El Mahjoub M. (2007): In vitro and in vivo evaluation of some biofungicides for potato Fusarium wilt biocontrol. International Journal of Agricultural Research, 2: 282–288. https://doi.org/10.3923/ijar.2007.282.288
 
Bartkiene E., Bartkevics V., Lele V., Pugajeva I., Zavista-naviciute P., Mickiene R., Zadeike D., Juodeikiene G. (2018): A concept of mould spoilage prevention and acrylamide reduction in wheat bread: Application of lactobacilli in combination with a cranberry coating. Food Control, 91: 284–293. https://doi.org/10.1016/j.foodcont.2018.04.019
 
Beccari G., Prodi A., Tini F., Bonciarelli U., Onofri A., Oueslati S., Limayma M., Covarelli L. (2017): Changes in the Fusarium head blight complex of malting barley in a three-year field experiment in Italy. Toxins, 9: 120. https://doi.org/10.3390/toxins9040120
 
Benhamou N., Belanger R.R., Rey P., Tirilly Y. (2001): Oligandrin, the elicitin-like protein produced by Pythium oligandrum, induces systemic resistance to Fusarium crown and root rot in tomato plants. Plant Physiology and Biochemistry, 39: 681–698. https://doi.org/10.1016/S0981-9428(01)01283-9
 
Benhamou N., Rey P., Picard K., Tirilly Y. (1999): Ultrastructure and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens. Phytopathology, 89: 506–517. https://doi.org/10.1094/PHYTO.1999.89.6.506
 
Berthiller F., Crews C., Dall'Asta C., De Daeger S., Haesaert G., Karlovsky P., Oswald I.P., Seefelder W., Speijers G., Stroka J. (2013). Masked mycotoxins: A review. Molecular Nutrition & Food Research, 57: 165–186.
 
Boivin P., Malanda M. (1999): United States of America Patent No. 5 955 070.
 
Boeira L., Bryce J., Stewart G., Flannigan B. (2002): Influence of cultural conditions on sensitivity of brewing yeasts growth to Fusarium mycotoxins zearalenone, deoxynivalenol and fumonisin B1. International Biodeterioration & Biodegradation, 50: 69–81.
 
Boutroua R., Guéguen M. (2005): Interests in Geotrichum candidum for cheese technology. International Journal of Food Microbiology, 102: 1–20. https://doi.org/10.1016/j.ijfoodmicro.2004.12.028
 
Calado T., Venâncio A., Abrunhosa L. (2014): Irradiation for mold and mycotoxin control: A review. Comprehensive Reviews in Food Science and Food Safety, 13: 1049–1061. https://doi.org/10.1111/1541-4337.12095
 
Contreras-Jiménez B., Del Real A., Millan-Malo B.M., Gaytán-Martínez M., Morales-Sánchez E., Rodríguez-García M.E. (2017): Physiochemical changes in barley starch during malting. Journal of the Institute of Brewing, 125: 10–17. https://doi.org/10.1002/jib.547
 
Corsetti A., Gobbetti M., Rossi J., Damiani P. (1998): Antimould activity of sourdough lactic acid bacteria: Identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Applied Microbiology and Biotechnology, 50: 253–256. https://doi.org/10.1007/s002530051285
 
Dalié D.K.D., Deschamps A.M., Richard-Forget F. (2010): Lactic acid bacteria – Potential for control of mould growth and mycotoxins: A review. Food Control, 21: 370–380. https://doi.org/10.1016/j.foodcont.2009.07.011
 
Dodd J.G., Vegi A., Vashisht A., Tobias D., Schwarz P., Wolf-Hall C.E. (2011): Effect of ozone treatment on the safety and quality of malting barley. Journal of Food Protection, 74: 2134–2141. https://doi.org/10.4315/0362-028X.JFP-11-193
 
European Commission (2017): Risk to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA Journal, 15: 4718.
 
Evans D.E., Redd K., Haraysmow S.E., Elvig N., Metz N., Koutoulis A. (2014): The influence of malt quality on malt brewing and barley quality on barley brewing with Ondea Pro, compared by small-scale analysis. Journal of the American Society of Brewing Chemists, 72: 192–207. https://doi.org/10.1094/ASBCJ-2014-0630-01
 
Feizollahi E., Roopesh M.S. (2021): Mechanisms of deoxynivalenol (DON) degradation during different treatments: A review. Critical Reviews in Food Science and Nutrition, 64: 1–24. https://doi.org/10.1080/10408398.2021.1895056
 
Freire L., Sant'Ana A.S. (2018): Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food and Chemical Toxicology, 111: 189–205. https://doi.org/10.1016/j.fct.2017.11.021
 
Foszczyńska B., Dziuba E., Stempniewicz R. (2004): The use of Geotrichum candidum starter culture for protection of barley and its influence on biotechnological qualities of malt. Electronic Journal of Polish Agricultural Universities, 7: 04.
 
Garmendia G., Pattarino L., Negrín C., Martínez-Silveira A., Pereyra S., Ward T., Vero S. (2018): Species composition, toxigenic potential and aggressiveness of Fusarium isolates causing head blight of barley in Uruguay. Food Microbiology, 76: 426–433. https://doi.org/10.1016/j.fm.2018.07.005
 
Geissinger C., Hofer K., Habler K., Hess M., Hückelhoven R., Rychlik M., Becker T., Gastl M. (2017): Fusarium species on barley malt: Is visual assessment an appropriate tool for detection? Cereal Chemistry, 94: 659–669. https://doi.org/10.1094/CCHEM-08-16-0212-R
 
Habler K., Geissinger C., Hofer K., Schüler J., Moghari S., Hess M., Gastl M., Rychlik M. (2017): Fate of Fusarium toxins during brewing. Journal of Agricultural and Food Chemistry, 65: 190–198. https://doi.org/10.1021/acs.jafc.6b04182
 
Habler K., Moghari S., Rychlik M. (2018): Analysis of Fusarium toxins in single barley malt kernels. Journal of Analysis and Testing, 2: 124–137. https://doi.org/10.1007/s41664-018-0057-5
 
Habschied K., Krska R., Sulyok M., Šarkanj B., Krstanović V., Lalić A., Šimić G., Mastanjević K. (2019): Screening of various metabolites in six barley varieties grown under natural climatic conditions (2016–2018). Microorganisms, 7: 532. https://doi.org/10.3390/microorganisms7110532
 
Hofer K., Geissinger C., König C., Gastl M., Hückelhoven R., Hess M., Coleman A.D. (2016): Influence of Fusarium isolates on the expression of barley genes related to plant defense and malting quality. Journal of Cereal Science, 69: 17–24. https://doi.org/10.1016/j.jcs.2016.02.005
 
Hofer K., Hückelhoven R., Hess M. (2019): Analysis of archive samples of spring and winter barley support an increase in individual Fusarium species in Bavarian barley grain over the last decades. Journal of Plant Diseases and Protection, 126: 247–254. https://doi.org/10.1007/s41348-019-00220-0
 
Horackova S., Novakova T., Slukova M., Bialasova K., Kumherova M., Plockova M. (2018): Antifungal activity of selected lactobacilli intended for sourdough production. Applied Food Biotechnology, 5: 213–220.
 
Hrubošová D., Vytřasová J., Brožková I. (2015): Production of T-2 toxin and deoxynivalenol in the presence of different disinfectants. Potravinarsto, 9: 18–23.
 
Hückelhoven R., Hofer K., Coleman A., Hess M. (2018): Fusarium infection of malting barley has to be managed over the entire value chain. Journal of Plant Diseases and Protection, 125: 1–4. https://doi.org/10.1007/s41348-017-0101-0
 
Ikeda S., Shimizu A., Shimizu M., Takahashi H., Takenaka S. (2012): Biocontrol of black scurf on potato by seed tuber treatment with Pythium oligandrum. Biological Control, 60: 297–304. https://doi.org/10.1016/j.biocontrol.2011.10.016
 
Iwase C.H.T., Piacentini K.C., Giomo P.P., Čumová M., Wawroszová S., Běláková S., Minella E., Rocha L.O. (2020): Characterization of the Fusarium sambucinum species complex and detection of multiple mycotoxins in Brazilian barley samples. Food Research International, 136: 109336. https://doi.org/10.1016/j.foodres.2020.109336
 
Janssen E., Liu C., Van der Fels-Klerx H. (2018): Fusarium infection and trichothecenes in barley and its comparison with wheat. World Mycotoxin Journal, 11: 33–46. https://doi.org/10.3920/WMJ2017.2255
 
Jestoi M.N., Paavanen-Huhtala S., Parikka P., Yli-Mattila T. (2008): In vitro and in vivo mycotoxin production of Fusarium species isolated from Finnish grains. Archives of Phytopathology and Plant Protection, 41: 545–558. https://doi.org/10.1080/03235400600881547
 
Jin Z., Gillespie J., Barr J., Wiersma J.J., Sorrells M.E., Zwinger S., Gross T., Cumming J., Bergstrom G.C., Brueggeman R., Horsley R.D., Schwarz P.B. (2018): Malting of Fusarium head blight-infected rye (Secale cereale): Growth of Fusarium graminearum, trichothecene production, and the impact on malt quality. Toxins, 10: 369. https://doi.org/10.3390/toxins10090369
 
Jukonyte R., Zadeike D., Bartkiene E., Lele V., Cernaukas D., Suproniene S., Juodeikiene G. (2018): A potential of brown rice polish as a substrate for the lactic acid and bioactive compounds production by lactic acid bacteria newly isolated from cereal-based fermented products. LWT – Food Science and Technology, 87: 323–331. https://doi.org/10.1016/j.lwt.2018.07.012
 
Juodeikiene G., Bartkiene E., Cernauskas D., Cizeikiene D., Zadeike D., Lele V., Bartkevics V. (2018): Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. LWT – Food Science and Technology, 89: 307–314. https://doi.org/10.1016/j.lwt.2017.10.061
 
Khalesi M., Deckers S., Riveros-Galan D., Gebruers K., Derdelinckx G. (2015): Upgraded model of primary gushing: From nanobubble formation until liquid expulsion. Journal of the American Society of Brewing Chemists, 73: 343–346. https://doi.org/10.1094/ASBCJ-2015-0929-01
 
Kharazian Z.A., Aghdasi M., Jouzan G.S., Zamani M. (2017): Effects of Fusarium verticilliodes and Lactobacillus strains inoculation of growth and antioxidant enzyme activity of Zea mays plants. Journal of Horticultural Research, 5: 67–74. https://doi.org/10.1515/johr-2017-0015
 
Kottapalli B., Wolf-Hall C.E. (2008): Effect of hot water treatments on the safety and quality of Fusarium-infected malting barley. International Journal of Food Microbiology, 124: 171–178. https://doi.org/10.1016/j.ijfoodmicro.2008.03.010
 
Kottapalli B., Wolf-Hall C.E., Schwarz P. (2005): Evaluation of gaseous ozone and hydrogen peroxide treatments for reducing Fusarium survival in malting barley. Journal of Food Protection, 68: 1236–1240. https://doi.org/10.4315/0362-028X-68.6.1236
 
Kottapalli B., Wolf-Hall C.E., Schwarz P. (2006): Effect of electron-beam irradiation on the safety and quality of Fusarium-infected malting barley. International Journal of Food Microbiology, 110: 224–231. https://doi.org/10.1016/j.ijfoodmicro.2006.04.007
 
Kottapalli B., Wolf-Hall C.E., Schwarz P., Schwarz J., Gillespie J. (2003): Evaluation of hot water and electron beam irradiation for reducing Fusarium infection in malting barley. Journal of Food Protection, 66: 1241–1246. https://doi.org/10.4315/0362-028X-66.7.1241
 
Ksieniewicz-Woźniak E., Bryła M., Waśkiewicz A., Yoshinari T., Szymczyk K. (2019): Selected trichothecenes in barley malt and beer from Poland and an assessment of dietary risks associated with their consumption. Toxins, 11: 715. https://doi.org/10.3390/toxins11120715
 
Laitila A., Alakomi H.L., Mattila-Sandholm T., Haikara A. (2002): Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting barley. Journal of Applied Microbiology, 93: 566–576. https://doi.org/10.1046/j.1365-2672.2002.01731.x
 
Laitila A., Sarlin T., Kotaviita E., Huttunen T., Home S., Wilhelmson A. (2007): Yeast isolated from industrial maltings can suppress Fusarium growth and formation of gushing factors. Journal of Industrial Microbiology and Biotechnology, 34: 701–713. https://doi.org/10.1007/s10295-007-0241-5
 
Laitila A., Sarlin T., Raulio M., Wilhelmson A., Kotaviita E., Huttunen T., Juvonen R. (2011): Yeast in malting, with special emphasis on Wicherhamomyces anomalus. Antonie van Leeuwenhoek, 99: 75–84. https://doi.org/10.1007/s10482-010-9511-8
 
Laitila A., Sweins H., Vilpola A., Kotaviita E., Olkku J., Home S., Haikara A. (2006): Lactobacillus plantarum and Pediococcus pentosaceus starter cultures as a tool for microflora management in malting and enhancement of malt processability. Journal of Agricultural and Food Chemistry, 54: 3840–3851. https://doi.org/10.1021/jf052979j
 
Lake J., Browers M., Yin X.S., Speers R.A. (2007). Use of sodium bisulfite as a method to reduce DON levels in barley during malting. Journal of the American Society of Brewing Chemists, 65: 172–176. https://doi.org/10.1094/ASBCJ-2007-0612-01
 
Lancova K., Hajslova J., Poustka J., Krplova A., Zachariasova M., Dostalek P., Sachambula L. (2008): Transfer of Fusarium mycotoxins and 'masked' deoxynivalenol (deoxynivalenol-3-glucoside) from field barley through malt to beer. Food Additives and Contaminants, 25: 732–744. https://doi.org/10.1080/02652030701779625
 
Langseth W., Bernhoft A., Runberget T., Kosiak B., Gareis M. (1999): Mycotoxin production and cytotoxicity of Fusarium strains isolated from Norwegian cereals. Mycopathologia, 144: 103–113. https://doi.org/10.1023/A:1007016820879
 
Linkmeyer A., Hofer K., Rychlik M., Herz M., Hausladen H., Hückelhoven R., Hess M. (2016): Influence of inoculum and climatic factors on the severity of Fusarium head blight in German spring and winter barley. Food Additives and Contaminants: Part A, 33: 489–499. https://doi.org/10.1080/19440049.2015.1133932
 
Liske R.B., Niessen L., Vogel R.F. (2000): Potential of lactic acid bacteria to reduce the growth of Fusarium culmorum in the malting process. Mycotoxin Research, 16: 62–65. https://doi.org/10.1007/BF02942983
 
Lowe D.P., Arendt E.K. (2004): The use and effects of lactic acid bacteria in malting and brewing with their relationship to antifungal activity, mycotoxins and gushing: A review. Journal of the Institute of Brewing, 110: 163–180. https://doi.org/10.1002/j.2050-0416.2004.tb00199.x
 
Lowe D.P., Arendt E.K., Soriano A.M., Ulmer H.M. (2005): The influence of lactic acid bacteria on the quality of malt. Journal of the Institute of Brewing, 111: 42–50. https://doi.org/10.1002/j.2050-0416.2005.tb00647.x
 
Lowe D.P., Ulmer H.M., Graser K., Arendt E.K. (2006): The influence of starter cultures on barley contaminated with Fusarium culmorum TMW 4.0754. Journal of the American Society of Brewing Chemists, 64: 157–165. https://doi.org/10.1094/ASBCJ-64-0158
 
Madgwick J.W., West J.S., White R.P., Semenov M.A., Townsend J.A., Turner J.A., Fitt B.D.L. (2011): Impacts of climate change on wheat anthesis and Fusarium war blight in the UK. European Journal of Plant Pathology, 130: 117–131. https://doi.org/10.1007/s10658-010-9739-1
 
Malachova A., Cerkal R., Ehrenbergerova J., Dzuman Z., Vaculova K., Hajslova J. (2010): Fusarium mycotoxins in various barley cultivars and their transfer into malt. Journal of the Science of Food and Agriculture, 90: 2495–2505. https://doi.org/10.1002/jsfa.4112
 
Mallmann C., Dilkin P., Mallmann A., Oliveira M., Adaniya Z., Tonini C. (2017): Prevalence and levels of deoxynivalenol and zearalenone in commercial barley and wheat grain produced in Southern Brazil: An eight-year (2008 to 2015) summary. Tropical Plant Pathology, 42: 146–152. https://doi.org/10.1007/s40858-017-0152-6
 
Marin S., Ramos A.J., Cano-Sancho G., Sanchis V. (2013): Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, 60: 218–237. https://doi.org/10.1016/j.fct.2013.07.047
 
Mastanjević K., Krstanović V., Lukinac J., Mastanjević K. (2018): Impact of Fusarium infection and fungicide treatment on wheat malt wort quality. Journal of the Institute of Brewing, 124: 204–208. https://doi.org/10.1002/jib.492
 
Mauch A., Dal Bello F., Coffey Z., Arendt E.K. (2010): The use of Lactobacillus brevis PS1 to in vitro inhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. International Journal of Food Microbiology, 141: 116–121. https://doi.org/10.1016/j.ijfoodmicro.2010.05.002
 
McKee G., Cowger C., Dill-Macky R., Friskop A., Gautam P., Ransom J., Wilson W. (2019): Disease management and estimated effects on DON (deoxynivalenol) contamination in Fusarium infested barley. Agriculture, 9: 155. https://doi.org/10.3390/agriculture9070155
 
Moretti A., Pascale M., Logrieco A.F. (2019): Mycotoxin risks under a climate change scenario in Europe. Trends in Food Science & Technology, 84: 38–40.
 
Munkvold G. (2017): Fusarium species and their associated mycotoxins. Methods in Molecular Biology, 1542: 51–106.
 
Munkvold G.P., Arias S., Taschl I., Gruber-Dorninger C. (2019): Mycotoxins in corn: Occurrence, impacts, and management. In: Serna-Saldivar S.O. (ed.): Corn. 3rd Ed. Place of Publisher, Woodhead Publishing and AACC International Press: 235–287.
 
Munkvold G.P., Proctor R.H., Moretti A. (2021): Mycotoxin production in Fusarium according to contemporary species concepts. Annual Review of Phytopathology, 59: 373–402. https://doi.org/10.1146/annurev-phyto-020620-102825
 
Nielsen L., Cook D., Edwards S., Ray R. (2014): The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK. International Journal of Food Microbiology, 179: 38–49. https://doi.org/10.1016/j.ijfoodmicro.2014.03.023
 
Ng C.A., Pernica M., Yap J., Belakova S., Vaculova K., Branyik T. (2021): Biocontrol effect of Pythium oligandrum on artificial Fusarium culmorum infection during malting of wheat. Journal of Cereal Science, 100: 103258. https://doi.org/10.1016/j.jcs.2021.103258
 
Nogueira M., Decundo J., Martinez M., Dieguez S., Moreyra F., Moreno M., Stenglein S. (2018): Natural contamination with mycotoxins produced by Fusarium graminearum and Fusarium poae in malting barley in Argentina. Toxins, 10: 78. https://doi.org/10.3390/toxins10020078
 
Oliveira P.M., Brosnan B., Furey A., Coffey A., Zannini E. (2015a): Lactic acid bacteria bioprotection applied to the malting process. Part I: Strain characterization and identification of antifungal compounds. Food Control, 51: 433–443. https://doi.org/10.1016/j.foodcont.2014.07.004
 
Oliveira P.M., Zannini E., Arendt E.K. (2014): Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: From crop farming to cereal products. Food Microbiology, 37: 78–95. https://doi.org/10.1016/j.fm.2013.06.003
 
Oliveira P., Brosnan B., Jacob F., Furey A., Coffey A., Zannini E., Arendt E.K. (2015b): Lactic acid bacteria bioprotection applied to the malting process. Part II: Substrate impact and mycotoxin reduction. Food Control, 51: 444–452. https://doi.org/10.1016/j.foodcont.2014.11.011
 
Oliveira P., Mauch A., Jacob F., Arendt E.K. (2012): Impact of Fusarium culmorum-infected barley malt grains on brewing and beer quality. Journal of the American Society of Brewing Chemists, 70: 186–194. https://doi.org/10.1094/ASBCJ-2012-0713-01
 
Parikka P., Hakala K., Tiilikkala K. (2012): Expected shifts in Fusarium species' composition on cereal grain in Northern Europe due to climatic change. Food Additives & Contaminants: Part A, 29: 1543–1555.
 
Paris M.P.K., Schweiger W., Hametner C., Stückler R., Muehlbauer G.J., Varga E., Krska R., Berthiller F., Adam G. (2014): Zearalenone-16-O-glucoside: A new masked mycotoxin. Journal of Agriculture and Food Chemistry, 62: 1181–1189. https://doi.org/10.1021/jf405627d
 
Pascari X., Ramos A.J., Marín S., Sanchís V. (2018): Mycotoxins and beer. Impact of beer production process on mycotoxin contamination. A review. Food Research International, 103: 121–129. https://doi.org/10.1016/j.foodres.2017.07.038
 
Perczak A., Goliński P., Bryła M., Waśkiewicz A. (2018): The efficiency of lactic acid bacteria against pathogenic fungi and mycotoxins. Arhiv za Higijenu Rada i Toksikologiju, 69: 32–45. https://doi.org/10.2478/aiht-2018-69-3051
 
Peyer L.C., Axel C., Lynch K.M., Zannini E., Jacob F., Arendt E.K. (2016): Inhibition of Fusarium culmorum by carboxylic acid release from lactic acid bacteria in a barley malt substrate. Food Control, 69: 227–236. https://doi.org/10.1016/j.foodcont.2016.05.010
 
Piacentini K., Běláková S., Benešova K., Pernica M., Savi G., Rocha L., Hartman I., Čáslavský J., Corrêa B. (2019a): Fusarium mycotoxins stability during the malting and brewing process. Toxins, 11: 257. https://doi.org/10.3390/toxins11050257
 
Piacentini K., Rocha L., Savi G., Carnielli-Queiroz L., Fontes L., Correa B. (2019b): Assessment of toxigenic Fusarium species and their mycotoxins in brewing barley grains. Toxins, 11: 31. https://doi.org/10.3390/toxins11010031
 
Piegza M., Witkowska D., Stempniewicz R. (2014): Enzymatic and molecular characteristics of Geotrichum candidum strains as starter culture for malting. Journal of the Institute of Brewing, 120: 341–346.
 
Piegza M., Witkowska D., Stempniewicz R., Rywińska A. (2005): Geotrichum candidum activity in milled malt and barley medium. Electronic Journal of Polish Agricultural Universities, 8: 15.
 
Postulkova M., Rezanina J., Fiala J., Ruzicka M.C., Dostalek P., Branyik T. (2018): Suppression of fungal contamination by Pythium oligandrum during malting of barley. Journal of the Institute of Brewing, 124: 336–340. https://doi.org/10.1002/jib.518
 
Postulkova M., Riveros-Galan D., Cordova-Aguilar K., Zitkova K., Verachtert H., Derdelinckx G., Dostalek P., Ruzicka M.C., Branyik T. (2016): Technological possibilities to prevent and suppress primary gushing of beer. Trends in Food Science & Technology, 49: 64–73.
 
Ramakrishna N., Lacey J., Smith J.E. (1991): Effect of surface sterilization, fumigation and gamma irradiation on the microflora and germination of barley seeds. International Journal of Food Microbiology, 13: 47–54. https://doi.org/10.1016/0168-1605(91)90135-C
 
Polišenská A., Vaculová K., Jirsa O., Sedláčhová I., Frydrych J. (2019): Yield and quality of two hulless barley varieties after inoculation with Fusarium culmorum. Kvasný Průmysl, 65: 17–22. https://doi.org/10.18832/kp2019.65.17
 
Psota V., Kosař K. (2002): Malting quality index. Kvasný Průmysl, 48: 142–148. https://doi.org/10.18832/kp2002011
 
Psota V., Musilová M. (2020): System for the evaluation of malting quality of wheat varieties. Kvasný Průmysl, 66: 232–238. https://doi.org/10.18832/kp2020.66.232
 
Rood L., Koutoulis A., Bowman J.P., Evans D.E., Stanley R.A., Kaur M. (2018): Control of microbes on barley grains using peracetic acid and electrolyzed water as antimicrobial agents. Food Microbiology, 76: 103–109. https://doi.org/10.1016/j.fm.2018.05.002
 
Rouse S., van Sinderen D. (2008): Bioprotective potential of lactic acid bacteria in malting and brewing. Journal of Food Protection, 71: 1724–1733. https://doi.org/10.4315/0362-028X-71.8.1724
 
Russo P., Arena M.P., Fiocco D., Capozzi V., Drider D., Spano G. (2017): Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. International Journal of Food Microbiology, 247: 48–54. https://doi.org/10.1016/j.ijfoodmicro.2016.04.027
 
Sarlin T., Laitila A., Pekkarinen A., Haikara A. (2005): Effects of three Fusarium species on the quality of barley and malt. Journal of the American Society of Brewing Chemists, 63: 43–49. https://doi.org/10.1094/ASBCJ-63-0043
 
Sarlin T., Vilpola A., Kotaviita E., Olkku J., Haikara A. (2007): Fungal hydrophobins in the barley-to-beer chain. Journal of the Institute of Brewing, 113: 147–153. https://doi.org/10.1002/j.2050-0416.2007.tb00271.x
 
Savi G.D., Piacentini K.C., Bittencourt K.O., Scussel V.M. (2014): Ozone treatment efficiency on Fusarium graminearum and deoxynivalenol degradation and its effects on whole wheat grains (Triticum aestivum L.) quality and germination. Journal of Stored Product Research, 59: 245–253. https://doi.org/10.1016/j.jspr.2014.03.008
 
Schapira S.F.D., Whithehead M.P., Flannigan B. (1989): Effects of the mycotoxin diacetoxyscripenol and deoxynivalenol on malting characteristics of barley. Journal of the Institute of Brewing, 95: 415–417. https://doi.org/10.1002/j.2050-0416.1989.tb04647.x
 
Schmidt M., Lynch K.M., Zannini E., Arendt E.K. (2018): Fundamental study on the improvement of the antifungal activity of Lactobacillus reuteri R29 through increased production of phenyllactic acid and reuterin. Food Control, 88: 139–148. https://doi.org/10.1016/j.foodcont.2017.11.041
 
Schwarz P.B., Beattie S., Casper H.H. (1996): Relationship between Fusarium infestation of barley and the gushing potential of malt. Journal of the Institute of Brewing, 102: 93–96. https://doi.org/10.1002/j.2050-0416.1996.tb00899.x
 
Schwarz P.B., Casper H.H., Beattie S. (1995): Fate and development of naturally occurring Fusarium mycotoxins during malting and brewing. Journal of the American Society of Brewing Chemists, 53: 121–127. https://doi.org/10.1094/ASBCJ-53-0121
 
Schwarz P.B., Horsley R.D., Steffenson B.J., Salas B., Barr J.M. (2006): Quality risks associated with the utilization of Fusarium head blight infected malting barley. Journal of the American Society of Brewing Chemists, 64: 1–7. https://doi.org/10.1094/ASBCJ-64-0001
 
Shephard G. (2011): Fusarium mycotoxins and human health. Plant Breeding Science, 64: 113–121. https://doi.org/10.2478/v10129-011-0034-x
 
Shokribousjein Z., Deckers S.M., Gebrues K., Lorgouilloux Y., Baggerman G., Verachtert H., Delcour J.A., Etirnnr P., Rock J.M., Michiels C., Derdelincks G. (2011): Hydrophobins, beer foaming and gushing. Cerevisia, 35: 85–101. https://doi.org/10.1016/j.cervis.2010.12.001
 
Shokribousjein Z., Philippaerts A., Riveros D., Titze J., Ford Y., Deckers S.M., Khalesi M., Delcour J.A., Gebruers K., Verachtert H., Ilberg V., Derdelinckx G., Sels B. (2014): A curative method for primary gushing of beer and carbonated beverages: Characterization and application of antifoam based hop oils. Journal of the American Society of Brewing Chemist, 72: 12–21. https://doi.org/10.1094/ASBCJ-2014-0114-01
 
Sobrova P., Adam V., Vasatkova A., Beklova M., Zeman L., Kizek R. (2009): Deoxynivalenol and its toxicity. Interdisciplinary Toxicology, 3: 94–99.
 
Song Y., Linderholm H.W., Wang C., Tian J., Huo Z., Gao P., Song Y., Guo A. (2019): The influence of excess precipitation on winter wheat under climate change in China from 1961 to 2017. Science of the Total Environment, 690: 189–196. https://doi.org/10.1016/j.scitotenv.2019.06.367
 
Spanic V., Marcek T., Abicic I., Sarkanj B. (2017): Effect of Fusarium head blight on wheat grain and malt infected by Fusarium culmorum. Toxins, 10: 17. https://doi.org/10.3390/toxins10010017
 
Spanic V., Zdunic Z., Drezner G., Sarkanj B. (2019): The pressure of Fusarium disease and its relation with mycotoxins in the wheat grain and malt. Toxins, 11: 198. https://doi.org/10.3390/toxins11040198
 
Takenaka S. (2015): Studies on biological control mechanisms of Pythium oligandrum. Journal of General Plant Pathology, 81: 466–469. https://doi.org/10.1007/s10327-015-0620-0
 
Tima H., Brückner A., Mohácsi-Farkas C., Kiskó G. (2016): Fusarium mycotoxins in cereals harvested from Hungarian fields. Food Additives & Contaminants: Part B, 9: 127–131.
 
Timmusk S., Nevo E., Ayele F., Noe S., Niinemets Ü. (2020): Fighting Fusarium pathogens in the era of climate change: A conceptual approach. Pathogens, 9: 419. https://doi.org/10.3390/pathogens9060419
 
Tiwari B.K., Brennan C.S., Curran T., Gallagher E., Cullen P.J., O'Donnell C.P. (2010): Application of ozone in grain processing. Journal of Cereal Science, 51: 248–255. https://doi.org/10.1016/j.jcs.2010.01.007
 
U.S. FDA (2010): Guidance for Industry and FDA: Advisory Levels for Deoxynivalenol (DON) in Finished Wheat Products for Human Consumption and Grains and Grain By-products Used for Animal Feed. U.S. Food and Drug Administration. Available at https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-and-fda-advisory-levels-deoxynivalenol-don-finished-wheat-products-human (accessed Sept 8, 2020).
 
Van Nierop S.N.E., Rautenbach M., Axcell B.C., Cantrell I.C. (2006): The impact of microorganisms on barley and malt quality – A review. Journal of the American Society of Brewing Chemists, 64: 69–78. https://doi.org/10.1094/ASBCJ-64-0069
 
Vaughan M., Backhouse D., Del Ponte E.M. (2016). Climate change impact on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: A review. World Mycotoxin Journal, 9: 685–700. https://doi.org/10.3920/WMJ2016.2053
 
Vijayakumar M., Ilavenil S., Kim D.H., Arasu M.V., Priya K., Choi K.C. (2015): In-vitro assessment of the probiotic potential of Lactobacillus plantarum KCC-24 isolated from Italian rye-grass (Lolium multiflorum). Anaerobe, 32: 90–97. https://doi.org/10.1016/j.anaerobe.2015.01.003
 
Wang H., Yan Y., Wang J., Zhang H., Qi W. (2012): Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. PLos ONE, 7: e29452. https://doi.org/10.1371/journal.pone.0029452
 
Wenda-Piesik A., Lemańczyk G., Twaruźek M., Błajet-Kosicka A., Kazek M., Grajewski J. (2017): Fusarium head blight incidence and detection of Fusarium toxins in wheat in relation to agronomic factors. European Journal of Plant Pathology, 149: 515–531. https://doi.org/10.1007/s10658-017-1200-2
 
Wolf-Hall C.E. (2007): Mould and mycotoxin problems encountered during malting and brewing. International Journal of Food Microbiology, 119: 89–94. https://doi.org/10.1016/j.ijfoodmicro.2007.07.030
 
Xue A., Chen Y., Seifert K., Guo W., Blackwell B., Harris L., Overy D. (2019): Prevalence of Fusarium species causing head blight of spring wheat, barley and oat in Ontario during 2001–2017. Canadian Journal of Plant Pathology, 41: 392–402. https://doi.org/10.1080/07060661.2019.1582560
 
Yacoub A., Gerbore J., Magnin N., Chambon P., Dufour M.C., Corio-Costet M.F., Guyoneaud R., Rey P. (2016): Ability of Pythium oligandrum strains to protect Vitis vinifera L. by inducing plant resistance against Phaeomoniella chlamydospore, a pathogen involved in Esca, a grapevine trunk disease. Biological Control, 92: 7–16. https://doi.org/10.1016/j.biocontrol.2015.08.005
 
Yépez A., Luz C., Meca G., Vignolo G., Mañes J., Aznar R. (2017): Biopreservation potential of lactic acid bacteria from Andean fermented food of vegetal origin. Food Control, 78: 393–400. https://doi.org/10.1016/j.foodcont.2017.03.009
 
Zachariasova M., Vaclavikova M., Lacina O., Vaclavik L., Hajslova J. (2012): Deoxynivalenol oligoglycosides: New 'masked' Fusarium toxins occurring in malt, beer, and breadstuff. Journal of Agriculture and Food Chemistry, 60: 9280–9291. https://doi.org/10.1021/jf302069z
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti