New food compositions to increase the content of phenolic compounds in extrudates

https://doi.org/10.17221/223/2020-CJFSCitation:

Šárka E., Sluková M., Smrčková P. (2020): New food compositions to increase the content of phenolic compounds in extrudates. Czech J. Food. Sci., 38: 347–358.

download PDF

Phenolic compounds are linked to a number of health benefits, including antioxidant, antibacterial, antiglycaemic, antiviral, anticarcinogenic, anti-inflammatory and vasodilatory properties. To improve a great loss of phenolics during extrusion, researchers have investigated incorporating functional ingredients into the extrusion input mixture. Other reasons for the addition of active ingredients are the re-use of by-products from food technology, decreasing the calorie content of extruded food, inhibition of starch digestion, and the colour change of the gluten-free products. The paper presents 28 examples of new designs for extrusion based on rice, corn, cassava, sorghum, and lentil flours and on other crops, together with the analyses of phenolics. The present results show the highest total phenolic content in sorghum among cereals, and lentil flour and orange peel powder among mixtures for extrusion to prepare extrudates. The highest content of total flavonols was found in the mixture containing corn and freeze-dried red and purple potatoes.

References:
Adebowale A.A., Kareem S.T., Sobukola O.P., Adebisi M.A., Obadina A.O., Kajihausa O.E., Adegunwa M.O., Sanni L.O., Keith T. (2017): Mineral and antinutrient content of high quality cassava-tigernut composite flour extruded snack. Journal of Food Processing and Preservation, 41: e13125. https://doi.org/10.1111/jfpp.13125
 
Ahmedna J. Yu. M. (2013): Functional components of grape pomace: Their composition, biological properties and potential applications. International Journal of Food Science + Technology, 48: 221–237.
 
Altan A., McCarthy K.L, Maskan M. (2009): Effect of extrusion process on antioxidant activity, total phenolics and β-glucan content of extrudates developed from barley-fruit and vegetable by-products. International Journal of Food Science + Technology, 44: 1263–1271. https://doi.org/10.1111/j.1365-2621.2009.01956.x
 
Arribas C., Pereira E., Barros L., Alves M.J., Calhelha R.C., Guillamon E., Pedrosa M.M., Ferreira I.C.F.R. (2019): Healthy novel gluten-free formulations based on beans, carob fruit and rice: Extrusion effect on organic acids, tocopherols, phenolic compounds and bioactivity. Food Chemistry, 292: 304–313. https://doi.org/10.1016/j.foodchem.2019.04.074
 
Awika J.M., Rooney L.W. (2004): Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 65: 1199–1221. https://doi.org/10.1016/j.phytochem.2004.04.001
 
Azad Md. O.K., Kim W.W., Jin C.W., Kang W.S., Park C.H., Cho D.H. (2019): Development of a polymer-mediated soybean nanocomposite by hot melt extrusion to improve its functionality and antioxidant properties. Foods, 8: 41. https://doi.org/10.3390/foods8020041
 
Belewu M.A., Belewu K.Y. (2007): Comparative physiochemical evaluation of tigernut, soybean and coconut milk sources. International Journal of Agriculture and Biology, 5: 785–787.
 
Bouasla A., Wójtowicz A., Zidoune M.N., Olech M., Nowak R., Mitrus M., Oniszczuk A. (2016): Gluten-free precooked rice-yellow pea pasta: Effect of extrusion-cooking conditions on phenolic acids composition, selected properties and microstructure. Journal of Food Science, 81: C1070–1079. https://doi.org/10.1111/1750-3841.13287
 
Chávez D.W.H., Ascheri J.L.R., Carvalho C.W.P., Godoy R.L.O., Pacheco S. (2017): Sorghum and roasted coffee blends as a novel extruded product: Bioactive compounds and antioxidant capacity. Journal of Functional Foods, 29: 93–103. https://doi.org/10.1016/j.jff.2016.12.012
 
Ciudad-Mulero M., Barros L., Fernandes A., Berrios J. De. J., Cámara M., Morales P., Fernández-Ruiz V., Ferreira I.C.F.R. (2018): Bioactive compounds and antioxidant capacity of extruded snack-type products developed from novel formulations of lentil and nutritional yeast flours. Food & Function, 9: 819–829.
 
Espinoza-Moreno R.J., Reyes-Moreno C., Milán-Carrillo J., López-Valenzuela J.A., Paredes-López O., Gutiérrez-Dorado R. (2016): Healthy ready-to-eat expanded snack with high nutritional and antioxidant value produced from whole amarantin transgenic maize and black common bean. Plant Foods for Human Nutrition, 71: 218–224. https://doi.org/10.1007/s11130-016-0551-8
 
Fratianni F., Tucci M., De Palma M., Pepe R., Nazzaro F. (2007): Polyphenolic composition in different parts of some cultivars of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). Food Chemistry, 104: 1282–1286.
 
Gumul D., Areczuk A., Ziobro R., Ivanisova E., Zieba T. (2018): The influence of freeze-dried red and purple potatoes on content of bioactive polyphenolic compounds and quality properties of extruded maise snacks. Quality Assurance and Safety of Crops & Foods, 10: 51–60.
 
Guven O., Sensoy I., Senyuva H., Karakaya S. (2018): Food processing and digestion: The effect of extrusion process on bioactive compounds in extrudates with artichoke leaf powder and resulting in vitro cynarin and cynaroside bioaccessibility. LWT – Food Science and Technology, 90: 232–237. https://doi.org/10.1016/j.lwt.2017.12.042
 
Jan R., Saxena D.C., Singh S. (2017): Effect of extrusion variables on antioxidant activity, total phenolic content and dietary fibre content of gluten-free extrudate from germinated Chenopodium (Chenopodium album) flour. International Journal of Food Science + Technology, 52: 2623–2630. https://doi.org/10.1111/ijfs.13549
 
Jiang S., Liu Q., Xie Y., Zeng H., Zhang L., Jiang X., Chen X. (2015): Separation of five flavonoids from tartary buckwheat (Fagopyrumtataricum (L.) Gaertn) grains via off-line two dimensional high-speed counter-current chromatography. Food Chemistry, 186: 153–159.
 
Kasprzak K., Oniszczuk T., Wójtowicz A., Waksmundzka-Hajnos M., Olech M., Nowak R., Polak R., Oniszczuk A. (2018): Phenolic acid content and antioxidant properties of extruded maize snacks enriched with kale. Journal of Analytical Methods in Chemistry, ID 7830546.
 
Kosinska-Cagnazzo A., Bocquel D., Marmillod I., Andlauer W. (2017): Stability of goji bioactives during extrusion cooking process. Food Chemistry, 230: 250–256. https://doi.org/10.1016/j.foodchem.2017.03.035
 
Li Q., Chen J., Li T., Liu C.M., Zhai Y.X., McClements D.J., Liu J.Y. (2015): Separation and characterisation of polyphenols from underutilised byproducts of fruit production (Choreospondias auxiliaris peels): Inhibitory activity of proanthocyanidins against glycolysis enzymes. Food & Function, 6: 3693–3701.
 
Lohani U.C., Muthukumarappan K. (2017): Effect of extrusion processing parameters on antioxidant, textural and functional properties of hydrodynamic cavitated maise flour, sorghum flour and apple pomace-based extrudates. Journal of Food Process Engineering, 40: e12424.
 
Ma X., Ryu G. (2019): Effects of green tea contents on the quality and antioxidant properties of textured vegetable protein by extrusion-cooking. Food Science and Biotechnology, 28: 67–74. https://doi.org/10.1007/s10068-018-0437-7
 
de Morais Cardoso L., Pinheiro SS., Piler de Carvalho C.W., Vieira Queiroz V.A., Beserra de Menezes C., Bandeira Moreira A.V., Ribeiro de Barros F.A., Awika J.M., Duarte Martino H.S., Pinheiro-Sant›Ana H.M. (2015): Phenolic compounds profile in sorghum processed by extrusion cooking and dry heat in a conventional oven. Journal of Cereal Science, 65: 220–226. https://doi.org/10.1016/j.jcs.2015.06.015
 
Oladiran D.A., Emmambux N.M. (2018): Nutritional and functional properties of extruded cassava-soy composite with grape pomace. Starch/Stärke, 70: 1700298. https://doi.org/10.1002/star.201700298
 
Ortak M., Caltinoglu C., Sensoy I., Karakaya S., Mert B. (2017): Changes in functional properties and in vitro bioaccessibilities of β-carotene and lutein after extrusion processing. Journal of Food Science and Technology, 54: 3543–3551. https://doi.org/10.1007/s13197-017-2812-4
 
Palanisamy M., Töpfl S., Berger R.G., Hertel C. (2019): Physico‑chemical and nutritional properties of meat analogues based on Spirulina/lupin protein mixtures. European Food Research and Technology, 245: 1889–1898. https://doi.org/10.1007/s00217-019-03298-w
 
Potterat O. (2010): Goji (Lycium barbarum or L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Medica, 76: 7–19.
 
Ramos Diaz J.M., Sundarrajan L., Kariluoto S., Lampi A.M., Tenitz S., Jouppila K. (2017): Effect of extrusion cooking on physical properties and chemical composition of maise-based snacks containing amaranth and quinoa: Application of partial least squares regression. Journal of Food Process Engineering, 40: e12320.
 
Rascón-Cruz Q., Sinagawa-García S.R., Osuna-Castro J.A., Bohorova N., Paredes-Lopez O. (2004) Accumulation, assembly and digestibility of amarantin expressed in transgenic tropical maise. Theoretical and Applied Genetics, 108: 335–342. https://doi.org/10.1007/s00122-003-1430-x
 
Rathod R.P., Annapure U.S. (2017): Antioxidant activity and polyphenolic compound stability of lentil-orange peel powder blend in an extrusion process. Journal of Food Science and Technology, 54: 954–963. https://doi.org/10.1007/s13197-016-2383-9
 
Repo-Carrasco-Valencia R., Pena J., Kallio H., Salminen S. (2009): Dietary fiber and other functional components in two varieties of crude and extruded kiwicha (Amaranthus caudatus). Journal of Cereal Science, 49: 219–224. https://doi.org/10.1016/j.jcs.2008.10.003
 
Ribeiro Oliveira A., Chaves Ribeiro A.E., Oliveira E.R., Mendes da Silva A.C., Soares Soares M. Jr., Caliari M. (2019): Broken rice grains pregelatinised flours incorporated with lyophilised açaıí pulp and the effect of extrusion on their physicochemical properties. Journal of Food Science and Technology, 56: 1337–1348.
 
Rufino M., Perez-Jimenez J., Arranz S., Alves R.E., de Brito E.S., Oliveira M.S.P., Saura-Calixto F. (2011): Açaí (Euterpe oleracea) ‘BRS Pará’: A tropical fruit source of antioxidant dietary fiber and high antioxidant capacity oil. Food Research International, 44: 2100–2106. https://doi.org/10.1016/j.foodres.2010.09.011
 
Sarawong C., Schoenlechner R., Sekiguchi K., Berghofer E., Ng P.K.W. (2014): Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour. Food Chemistry, 143: 33–39. https://doi.org/10.1016/j.foodchem.2013.07.081
 
Shahidi F., Yeo J.D. (2016): Insoluble-bound phenolics in food. Molecules, 21: 1216. https://doi.org/10.3390/molecules21091216
 
Shevkani K., Singh N., Rattan B., Singh J.P., Kaur A., Singh B. (2019): Effect of chickpea and spinach on extrusion behavior of maise grit. Journal of Food Science and Technology, 56: 2257–2266.
 
Shi N., Narciso J.O., Gou X., Brennan M.A., Zeng X.A., Brennan C.S. (2017): Manipulation of antioxidant and glycaemic properties of extruded rice based breakfast cereal products using pomelo fruit by-product material. Quality Assurance and Safety of Crops & Foods, 9: 489–495.
 
Sinagawa-García S.R., Rascón-Cruz Q., Valdez-Ortiz A., Medina-Godoy S., Escobar-Gutierrez A., Paredes-Lopez O. (2004): Safety assessment by in vitro digestibility and allergenicity of genetically modified maise with an amaranth 11S globulin. Journal of Agricultural and Food Chemistry, 52: 2709–2714. https://doi.org/10.1021/jf035487k
 
Singh J.P., Kaur A., Shevkani K., Singh N. (2016): Composition, bioactive compounds and antioxidant activity of common Indian fruits and vegetables. Journal of Food Science and Technology-Mysore, 53: 4056–4066. https://doi.org/10.1007/s13197-016-2412-8
 
Singh J.P., Kaur A., Singh B., Singh N., Singh B. (2019): Physicochemical evaluation of corn extrudates containing varying buckwheat flour levels prepared at various extrusion temperatures. Journal of Food Science and Technology-Mysore, 56: 2205–2212. https://doi.org/10.1007/s13197-019-03703-y
 
Tepsongkroh B., Jangchud K., Jangchud A., Charunuch C., Prinyawiwatkul W. (2019): Healthy brown rice-based extrudates containing straw mushrooms: Effect of feed moisture and mushroom powder contents. Journal of Food Processing and Preservation, 43: e14089. https://doi.org/10.1111/jfpp.14089
 
Valero-Munoz M., Martín-Fernández B., Ballesteros S., Lahera V., de las Heras N. (2014): Carob pod insoluble fiber exerts anti-atherosclerotic effects in rabbits through sirtuin-1 and peroxisome proliferator-activated receptor-c coactivator-1a. The Journal of Nutrition, 144: 1378–1384. https://doi.org/10.3945/jn.114.196113
 
Wang T., He F., Chen G. (2014): Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. Journal of Functional Foods, 7: 101–111. https://doi.org/10.1016/j.jff.2014.01.033
 
Wani S.A., Kumar P. (2016a): Influence of different mixtures of ingredients on the physicochemical, nutritional and pasting properties of extruded snacks. Journal of Food Measurement and Characterization, 10: 690–700. https://doi.org/10.1007/s11694-016-9353-9
 
Wani S.A., Kumar P. (2016b): Fenugreek: A review on its nutraceutical properties and utilisation in various food products. Journal of the Saudi Society of Agricultural Sciences, 17: 97–106. https://doi.org/10.1016/j.jssas.2016.01.007
 
Wojtowicz A., Oniszczuk A., Oniszczuk T., Kocira S., Wojtunik K., Mitrus M., Kocira A., Widelski J., Skalicka-Wozniak K. (2017): Application of Moldavian dragonhead (Dracocephalum moldavica L.) leaves addition as a functional component of nutritionally valuable maise snacks. Journal of Food Science and Technology, 54: 3218–3229.
 
Xu E., Wu Z., Jiao A., Long J., Liab J., Jin Z. (2017): Dynamics of rapid starch gelatinisation and total phenolic thermomechanical destruction moderated via rice bio-extrusion with alphaamylase activation. RSC Advances, 7: 19464–19478.
 
Ying D.Y., Hlaing M.M., Lerisson J., Pitts K., Chenga L., Sanguansri L., Augustin M.A. (2017): Physical properties and FTIR analysis of rice-oat flour and maise-oat flour based extruded food products containing olive pomace. Food Research International, 100: 665–673. https://doi.org/10.1016/j.foodres.2017.07.062
 
Zeng Z., Huang K., McClements D.J., Hu X., Luo S., Liu C. (2019): Phenolics, antioxidant activity, and in vitro starch digestibility of extruded brown rice influenced by Choerospondias axillaris fruit peels addition. Starch/Stärke, 71: 1800346. https://doi.org/10.1002/star.201800346
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti