Optimization of ultrasound assisted extraction method for polyphenols from Desmodium triquetrum (L.) DC. with response surface methodology (RSM) and in vitro determination of its antioxidant properties

https://doi.org/10.17221/230/2019-CJFSCitation:Zhang G., Chen Y., Tariq K., An Z., Wang S., Qumar Memon F., Zhang W., Si H. (2020): Optimization of ultrasound assisted extraction method for polyphenols from Desmodium triquetrum (L.) DC. with response surface methodology (RSM) and in vitro determination of its antioxidant properties. Czech J. Food Sci., 38: 115-122.
download PDF

The response surface method was used to study the ultrasonic extraction of traditional Chinese medicine Desmodium triquetrum (L.) DC. phenolic acid. By measuring the total phenolic content, the liquid/solid ratio, ultrasonic power, temperature, time and ethanol solubility were determined to be the significant influencing factors. The total phenolic content reached the highest value (30.3708 mg g–1) under the conditions of the liquid/solid ratio 30%, ultrasonic power 160 w, temperature 40 °C, time 20 min, and ethanol solubility 60%, compared with the traditional boiling method. The total phenolic content was improved, and it was close to the predicted value (29.6548 mg g–1), which proves that the scheme is feasible. After testing, the phenolic acid extracted under these conditions has a good antioxidation effect. The study suggests that ultrasonic extraction methods have the potential to extract antioxidants from traditional Chinese medicines. Also, the influence parameters affecting the process can be further optimized for industrial production.

References:
Arruda H.S., Silva E.K., Pereira G.A., Angolini C.F.F., Eberlin M.N., Meireles M.A.A., Pastore G.M. (2019): Effects of high-intensity ultrasound process parameters on the phenolic compounds recovery from araticum peel. Ultrasonics Sonochemistry, 50: 82–95. https://doi.org/10.1016/j.ultsonch.2018.09.002
 
Belwal T., Huang H., Li L., Duan, Z.H., Zhang X., Aalim H., Zhang X., Aalim, H., Luo Z. (2019): Optimization model for ultrasonic-assisted and scale-up extraction of anthocyanins from Pyrus communis ‘Starkrimson’ fruit peel. Food Chemistry, 297. https://doi.org/10.1016/j.foodchem.2019.124993
 
Chemat F., Zill-E-Huma, Khan M.K. (2011): Applications of ultrasound in food technology: Processing, preservation, and extraction. Ultrasonics Sonochemistry, 18: 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023
 
Fang X., Gu S., Jin Z., Hao M., Yin Z., Wang J. (2018): Optimization of ultrasonic-assisted simultaneous extraction of three active compounds from the fruits of Forsythia suspensa and comparison with conventional extraction methods. Molecules, 23: 2115. https://doi.org/10.3390/molecules23092115
 
Hayat K., Hussain S., Abbas S., Farooq U., Ding B., Xia S., Xia W. (2009): Optimized microwave-assisted extraction of phenolic acids from citrus, mandarin peels and evaluation of antioxidant activity in vitro. Separation and Purification Technology, 70: 63–70. https://doi.org/10.1016/j.seppur.2009.08.012
 
Huang H., Xu Q., Belwal T., Li L., Aalim H., Wu Q., Duan Z.H., Zhang X.B., Luo Z. (2019): Ultrasonic impact on viscosity and extraction efficiency of polyethylene glycol: A greener approach for anthocyanins recovery from purple sweet potato. Food Chemistry, 283: 59–67. https://doi.org/10.1016/j.foodchem.2019.01.017
 
Jupudi S., Jubie S., Deepika N.P., Dhanabal S.P. (2019): A new pyrimidine alkaloid from the roots of Tadehagi triquetrum (L.) H. Ohashi. Natural Product Research: 1–8. https://doi.org/10.1080/14786419.2019.1634716
 
Miller N.J., Rice-Evans C., Davies M.J., Gopinathan V., Milner A. (1993): A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science, 84: 407–412. https://doi.org/10.1042/cs0840407
 
Myers R.H., Khuri A.I., Carter W.H. (1989): Response surface methodology: 1966–l988. Technometrics, 31, 137–157. https://doi.org/10.1080/00401706.1989.10488509
 
Nong L., Chen Y., Liu D., Li Y. (2014): Advances in studies on chemistry quality control and pharmacology of tadehagi triquetrum. Asia-Pacific Traditional Medicine, 10: 46–48.
 
Nipornram S., Tochampa W., Rattanatraiwong P., Singanusong R. (2018): Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food Chemistry, 241: 338–345. https://doi.org/10.1016/j.foodchem.2017.08.114
 
Pejin B., Bogdanovic-Pristov J., Pejin I., Sabovljevic M. (2013): Potential antioxidant activity of the moss Bryum moravicum. Natural product research, 27: 900–902. https://doi.org/10.1080/14786419.2012.665915
 
Qadir R., Anwar F., Gilani M.A., Zahoor S., Mustaqeem M. (2019): RSM/ANN based optimized recovery of phenolics from mulberry leaves by enzyme-assisted extraction. Czech Journal of Food Sciences, 37: 99–105. https://doi.org/10.17221/147/2018-CJFS
 
Rawson A., Tiwari B.K., Patras A., Brunton N., Brennan C., Cullen P.J., O’Donnell C. (2011): Effect of thermosensation on bioactive compounds in watermelon juice. Food Research International, 44: 1168–1173. https://doi.org/10.1016/j.foodres.2010.07.005
 
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M, Rice-Evans C. (1999): Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26: 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
 
Shirsath S.R., Sable S.S., Gaikwad S.G., Sonawane S.H., Saini D.R., Gogate P.R. (2017): Intensification of extraction of curcumin from, curcuma amada, using ultrasound assisted approach: effect of different operating parameters. Ultrasonics Sonochemistry, 38: 437–445. https://doi.org/10.1016/j.ultsonch.2017.03.040
 
Tatake P.A., Pandit A.B. (2002): Modelling and experimental investigation into cavity dynamics and cavitational yield: Influence of dual frequency ultrasound sources. Chemical Engineering Science, 57: 4987–4995. https://doi.org/10.1016/S0009-2509(02)00271-3
 
Teh S.S., Birch E.J. (2014): Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes. Ultrasonics Sonochemistry, 21: 346–353. https://doi.org/10.1016/j.ultsonch.2013.08.002
 
Toma M., Vinatoru M., Paniwnyk L., Mason T. (2001): Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrasonics Sonochemistry, 8: 137–142. https://doi.org/10.1016/S1350-4177(00)00033-X
 
Vedpal J.U., Wadhwani A., Dhanabal S.P. (2019): Isolation and characterization of flavonoids from the roots of medicinal plant Tadehagi triquetrum (L.) H. Ohashi. Natural Product Research: 1–6. https://doi.org/10.1080/14786419.2018.1561679
 
Vinatoru M., Mason T., Calinescu I. (2017): Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. Trends in Analytical Chemistry, 97: 159–178. https://doi.org/10.1016/j.trac.2017.09.002
 
Wolfe K., Wu X., Liu R.H. (2003): Antioxidant activity of apple peels. Journal of Agricultural and Food Chemistry, 51: 609–614. https://doi.org/10.1021/jf020782a
 
download PDF

© 2020 Czech Academy of Agricultural Sciences