Dissemination and characteristics of Klebsiella spp. at the processed cheese plant

https://doi.org/10.17221/232/2020-CJFSCitation:

Gelbíčová T., Kořená K., Pospíšilová-Hlucháňová L., Straková N., Karpíšková R. (2021): Dissemination and characteristics of Klebsiella spp. at processed cheese plant. Czech J. Food Sci., 39: 113–121.

download PDF

The genus Klebsiella is not generally considered as a major foodborne pathogen and with regard to food production it represents also a hygiene indicator. This study was focused on the monitoring of Klebsiella spp. dissemination at the processed cheese plant and determination of virulence determinants and antibiotic resistance of obtained strains. Klebsiella spp. were detected in 43% (37/87) of samples: swabs from the cheese processing environment (34/69), personnel (2/3) and raw material (milk powder) from an opened packaging (1/7). All tested samples of final processed cheeses were negative for the presence of Klebsiella spp. Obtained strains were identified as K. oxytoca (n = 32) and K. pneumoniae (n = 23). Typing results enabled to reveal the presence of two predominant PFGE clusters of K. pneumoniae and K. oxytoca suggesting the occurrence of suspect persistent strains, and spread of Klebsiella spp. between the production environment and the personnel. The melting process of processed cheese production was able to eliminate Klebsiella spp. in the final products, although some K. oxytoca and K. pneumoniae strains carried genes of the locus of heat resistance 1 (LHR1), which may lead to their increased heat resistance. K. pneumoniae and K. oxytoca isolated from the processed cheese plant did not represent any hypervirulent or multidrug-resistant strains which could be a potential threat to public health.

References:
Arakawa Y. (2020): Systematic research to overcome newly emerged multidrug-resistant bacteria. Microbiology and Immunology, 64: 231–251. https://doi.org/10.1111/1348-0421.12781
 
Bialek-Davenet S., Nicolas-Chanoine M.H., Decré D., Brisse S. (2013): Microbiological and clinical characteristics of bacteraemia caused by the hypermucoviscosity phenotype of Klebsiella pneumoniae in Korea. Epidemiology and Infection, 141: 188. https://doi.org/10.1017/S0950268812002051
 
Bojer M.S., Struve C., Ingmer H., Hansen D.S., Krogfelt K.A. (2010): Heat resistance mediated by a new plasmid encoded Clp ATPase, ClpK, as a possible novel mechanism for nosocomial persistence of Klebsiella pneumoniae. PLoS One, 5: e15467. https://doi.org/10.1371/journal.pone.0015467
 
Bojer M.S., Struve C., Ingmer H., Krogfelt K.A. (2013): ClpP-dependent and -independent activities encoded by the polycistronic clpK-encoding locus contribute to heat shock survival in Klebsiella pneumoniae. Research in Microbiology, 164: 205–210. https://doi.org/10.1016/j.resmic.2012.11.005
 
Boll E.J., Marti R., Hasman H., Overballe-Petersen S., Stegger M., Ng K., Knøchel S., Krogfelt K.A., Hummerjohann J., Struve C. (2017): Turn up the heat-food and clinical Escherichia coli isolates feature two transferrable loci of heat resistance. Frontiers in Microbiology, 8: 579. https://doi.org/10.3389/fmicb.2017.00579
 
Buňka F., Buňková L., Kráčmar S. (2009): Basic principles of processed cheese production. (Základní principy výroby tavených sýrů). 1st Ed. Mendel University, Brno, Czech Republic: 1–70. (in Czech)
 
Buňková L., Buňka F. (2017): Microflora of processed cheese and the factors affecting it. Critical Reviews in Food Science Nutrition, 57: 2392–2403. https://doi.org/10.1080/10408398.2015.1060939
 
Choby J.E., Howard-Anderson J., Weiss D.S. (2020): Hypervirulent Klebsiella pneumoniae – clinical and molecular perspectives. Journal of Internal Medicine, 287: 283–300. https://doi.org/10.1111/joim.13007
 
CLSI (2017): Performance Standards for Antimicrobial Susceptibility Testing. 27th Ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne, PA, USA.
 
Davis G.S., Waits K., Nordstrom L., Weaver B., Aziz M., Gauld L., Grande H., Bigler R., Horwinski J., Porter S., Stegger M., Johnson J.R., Liu C.M., Price L.B. (2015): Intermingled Klebsiella pneumoniae populations between retail meats and human urinary tract infections. Clinical Infectious Diseases, 61: 892–899. https://doi.org/10.1093/cid/civ428
 
Dunn S.J., Connor C., McNally A. (2019): The evolution and transmission of multi-drug resistant Escherichia coli and Klebsiella pneumoniae: The complexity of clones and plasmids. Current Opinion in Microbiology, 51: 51–56. https://doi.org/10.1016/j.mib.2019.06.004
 
Effah C.Y., Sun T., Liu S., Wu Y. (2020): Klebsiella pneumoniae: An increasing threat to public health. Annals of Clinical Microbiology and Antimicrobials, 19: 1. https://doi.org/10.1186/s12941-019-0343-8
 
El-Sukhon S.B. (2003): Identification and characterization of Klebsiellae isolated from milk and milk products in Jordan. Food Microbiology, 20: 225–230. https://doi.org/10.1016/S0740-0020(02)00085-0
 
Gundogan N., Citak S., Yalcin E. (2011): Virulence properties of extended spectrum β-lactamase-producing Klebsiella species in meat samples. Journal of Food Protection, 74: 559–564. https://doi.org/10.4315/0362-028X.JFP-10-315
 
Guo Y., Wang S., Zhan L., Jin Y., Duan J., Hao Z., Lv J., Qi X., Chen L., Kreiswirth B.N., Wang L., Yu F. (2017): Microbiological and clinical characteristics of hypermucoviscous Klebsiella pneumoniae isolates associated with invasive infections in China. Frontiers in Cellular and Infection Microbiology, 7: 24. https://doi.org/10.3389/fcimb.2017.00024
 
Guo Y., Zhou H., Qin L., Pang Z., Qin T., Ren H., Pan Z., Zhou J. (2016): Frequency, antimicrobial resistance and genetic diversity of Klebsiella pneumoniae in food samples. PLoS One, 11: e0153561. https://doi.org/10.1371/journal.pone.0153561
 
Husan O., Ҫadirci Ö. (2019): Determination of extended spectrum β-lactamase producing Enterobacteriaceae from cheese samples sold in public bazaars. Journal of Food Safety, 39: e12680. https://doi.org/10.1111/jfs.12680
 
Jagnow J., Clegg S. (2003): Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology, 149: 2397–2405. https://doi.org/10.1099/mic.0.26434-0
 
Ko K.S. (2017): The contribution of capsule polysaccharide genes to virulence of Klebsiella pneumoniae. Virulence, 8: 485–486. https://doi.org/10.1080/21505594.2016.1240862
 
Martin N.H., Trmčić A., Hsieh T.H., Boor K.J., Wiedmann M. (2016): The evolving role of coliforms as indicators of unhygienic processing conditions in dairy foods. Frontiers in Microbiology, 7: 1549. https://doi.org/10.3389/fmicb.2016.01549
 
Mercer R.G., Zheng J., Garcia-Hernandez R., Ruan L., Gänzle M.G., McMullen L.M. (2015): Genetic determinants of heat resistance in Escherichia coli. Frontiers in Microbiology, 6: 932. https://doi.org/10.3389/fmicb.2015.00932
 
Podschun R., Ullmann U. (1998): Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical Microbiology Reviews, 11: 589–603. https://doi.org/10.1128/CMR.11.4.589
 
PulseNet Europe (2017): Standard Operating Procedure for PulseNet PFGE of Escherichia coli O157:H7, Escherichia coli non-O157 (STEC), Salmonella serotypes, Shigella sonnei and Shigella flexneri. Available at https://www.cdc.gov/pulsenet/pdf/ecoli-shigella-salmonella-pfge-protocol-508c.pdf
 
Rastegar S., Moradi M., Kalantar-Neyestanaki D., Ali Golabi D., Hosseini-Nave H. (2019): Virulence factors, capsular serotypes and antimicrobial resistance of hypervirulent Klebsiella pneumoniae and classical Klebsiella pneumoniae in Southeast Iran. Infection and Chemotherapy, 51: e39.
 
Remya P., Shanthi M., Sekar U. (2018): Occurrence and characterization of hyperviscous K1 and K2 serotype in Klebsiella pneumoniae. Journal of Laboratory Physicians, 10: 283–288. https://doi.org/10.4103/JLP.JLP_48_18
 
Shimpoh T., Hirata Y., Ihara S., Suzuki N., Kinoshita H., Hayakawa Y., Ota Y., Narita A., Yoshida S., Yamada A., Koike K. (2017): Prevalence of pks-positive Escherichia coli in Japanese patients with or without colorectal cancer. Gut Pathogens, 9: 35. https://doi.org/10.1186/s13099-017-0185-x
 
Surgers L., Boyd A., Girard P.M., Arlet G., Decré D. (2016): ESBL-producing strain of hypervirulent Klebsiella pneumoniae K2, France. Emerging Infectious Disease, 22: 1687–1688. https://doi.org/10.3201/eid2209.160681
 
Wang Z., Fang Y., Zhi S., Simpson D.J., Gill A., McMullen L.M., Neumann N.F., Gänzle M.G. (2020): The locus of heat resistance confers resistance to chlorine and other oxidizing chemicals in Escherichia coli. Applied and Environmental Microbiology, 86: e02123-19.
 
Wang J.H., Liu Y.C., Lee S.S., Yen M.Y., Chen Y.S., Wang J.H., Wann S.R., Lin H.H. (1998): Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clinical Infectious Diseases, 26: 1434–1438. https://doi.org/10.1086/516369
 
Zhang Y., Zeng J., Liu W., Zhao F., Hu Z., Zhao Ch., Wang Q., Wang X., Chen H., Li H., Zhang F., Li S., Cao B., Wang H. (2015): Emergence of a hypervirulent carbapenem-resistant Klebsiella pneumoniae isolate from clinical infections in China. Journal of Infection, 71: 553–560. https://doi.org/10.1016/j.jinf.2015.07.010
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti