Phloridzin as a marker for evaluation of fruit products authenticity

Hrubá M, Baxant J., Čížková H., Smutná V., Kovařík F., Ševčík R, Hanušová K., Rajchl A. (2021): Phloridzin as a marker for evaluation of a fruit product’s authenticity. Czech J. Food Sci., 39: 49–57.

download PDF

Abstract: Phloridzin (phloretin-2'-O-glucoside) is a phenolic compound characteristic of the genus Malus. This study aimed to evaluate phloridzin as a marker of undeclared addition of apples in fruit products. To test this proposal, the heat and oxidation stability of phloridzin was firstly confirmed. Then the distribution and variability of phloridzin in apples were studied, showing no difference between the tested apple varieties (Golden Delicious, Granny Smith, Rubin and Champion) but a significant difference in phloridzin content in seeds (2 380 ± 755 mg kg–1) compared to peel, flesh and core, which contained less than 70 mg kg–1. The effects of different stages of apple purée production at an industrial scale were also investigated. The kinetics of phloridzin diffusion from seeds to apple homogenate played an important role in the final phloridzin content in 16 analysed apple purées (26–39 mg kg–1). Finally, the survey of phloridzin content in 31 fruit products in the market was carried out. Phloridzin was also measured in eight jams and fillings which did not declare the presence of apples on their labels; findings from 2 to 6 mg kg–1 indicate the addition of apples from 5% to 20%. It was confirmed that phloridzin appears to be a suitable marker for detecting the undeclared presence of apples, which are a cheap substitute for the declared fruit types.

Aguayo E., Requejo-Jackman C., Stanley R., Woolf A. (2010): Effects of calcium ascorbate treatments and storage atmosphere on antioxidant activity and quality of fresh-cut apple slices. Postharvest Biology and Technology, 57: 52–60.
Awad M.A., Jager A., Westing L.M. (2000): Flavonoid and chlorogenic acid levels in apple fruit characterisation of variation. Scientia Horticulturae, 83: 249–263.
Awad M.A., Jager A. (2001): Flavonoid and chlorogenic acid concentrations in skin of ‘Jonagold’ and ‘Elstar’ apples during and after regular and ultra-low oxygen storage. Postharvest Biology and Technology, 20: 15–24.
Bílková A., Baďurová K., Svobodová P., Vávra R., Jakubec P., Chocholouš P., Švec F., Sklenářová H. (2020): Content of major phenolic compounds in apples: Benefits of ultra-low oxygen conditions in long-term storage. Journal of Food Composition and Analysis, 92: 1–6.
Burda S., Oleszek W., Lee C.Y. (1990): Phenolic compounds and their changes in apples during maturation and cold storage. Journal of Agricultural and Food Chemistry, 38: 945–948.
Cook N.C., Samman S. (1996): Flavonoids-Chemistry, metabolism, cardioprotective effects, and dietary sources. Nutritional Biochemistry, 7: 66–76.
Cunja V., Mikulic-Petkovsek M., Zupan A., Stampar F., Schmitzer V. (2015): Frost decreases content of sugars, ascorbic acid and some quercetin glycosides but stimulates selected carotenes in Rosa canina hips. Journal of Plant Physiology, 178: 55–63.
Dragovic-Uzelac V., Pospisil J., Levaj B., Delonga K. (2005): The study of phenolic profiles of raw apricots and apples and their purees by HPLC for the evaluation of apricot nectars and jams authenticity. Food Chemistry, 91: 373–383.
Escarpa A., González M.C. (1998): High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. Journal of Chromatography A, 823: 331–337.
Feliciano R.P., Antunes C., Ramos A., Serra A.T., Figueira M.E., Duarte C.M.M. et al. (2010): Characterisation of traditional and exotic apple varieties from Portugal. Part 1 – Nutritional, phytochemical and sensory evaluation. Journal of Functional Foods, 2: 35–45.
Fügel R., Carle R., Schieber A. (2005): Quality and authenticity control of fruit purées, fruit preparations and jams—a review. Trends in Food Science & Technology, 16: 433–441.
Gomis D.B., Palomino N.F., Alonso J.J.M. (2001): Capillary liquid chromatographic determination of neutral phenolic compounds in apple juices. Analytica Chimica Acta, 426: 111–117.
Gosch C., Halbwirth H., Kuhn J., Miosic S., Stich K. (2009): Biosynthesis of phloridzin in apple (Malus domestica Borkh.). Plant Science, 176: 223–231.
Gosch C., Halbwirth H., Stich K. (2010): Phloridzin: Biosynthesis, distribution and physiological relevance in plants. Phytochemistry, 71: 838–843.
Górnaś P., Mišina I., Olšteine A., Krasnova I., Pugajeva I., Lācis G., Siger A., Michalak M., Soliven A., Segliņa D. (2015): Phenolic compounds in different fruit parts of crab apple: Dihydrochalcones as promising quality markers of industrial apple pomace by-products. Industrial Crops and Products, 74: 607–612.
Hilt P., Schieber A., Yildirim C., Arnold G., Klaiber I., Conrad J. et al. (2003): Detection of phloridzin in strawberries (Fragaria x ananassa Duch.) by HPLC-PDA-MS/MS and NMR spectroscopy. Journal of Agricultural and Food Chemistry, 51: 2896–2899.
Iwashina T. (2000): The structure and distribution of the flavonoids in plants. Journal of Plant Research, 113: 287–299.
Jham G.N. (1996): High-performance liquid chromatographic quantitation of phloridzin in apple seed, leaf and callus. Journal of Chromatography A, 719: 444–449.
Jayasankar N.P., Bandoni R.J., Towers G.H.N. (1969): Fungal degradation of phloridzin. Phytochemistry, 8: 379–383.
Kamiloglu S. (2019): Authenticity and traceability in beverages. Food Chemistry, 277: 12–24.
Karaman S., Tütem E., Başkan K.S., Apak R. (2010): Comparison of total antoxidant capacity and phenolic composition of some apple juices with combined HPLC-CUPRAC assay. Food Chemistry, 120: 1201–1209.
Kermasha S., Goetghebeur M., Dumont J., Couture R. (1995): Analyses of phenolic and furfural compounds in concentrated and non-concentrated apple juices. Food Research International, 28: 245–252.
Khanizadeh S., Tsao R., Rekika D., Yang R., Charles M.T., Rupasinghe H.P.V. (2008): Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. Journal of Food Composition and Analysis, 21: 396–401.
Kun Z., Lingyu H., Pengmin L., Xiaoqing G., Fengwang M. (2017): Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in Malus species. Plant Science, 265: 131–145.
Łata B., Trampczynska A., Paczesna J. (2009): Cultivar variation in apple peel and whole fruit phenolic composition. Scientia Horticulturae, 121: 176–181.
Lee K.W., Kim Y.J., Kim D., Lee H.J., Lee C.Y. (2003): Major phenolics in apple and their contribution to the total antioxidant capacity. Journal of Agricultural and Food Chemistry, 51: 6516–6520.
Lin L.Z., Mukhopadhyay S., Robbins R.J., Harnly J.M. (2007): Indentification and quantification of flavonoids of Mexican oregano (Lippia graveolens) by LC-DAD-ESI/MS analysis. Journal of Food Composition and Analysis, 20: 361–369.
Nowakowska Z. (2006): A review of anti-infective and anti-inflammatory chalcones. European Journal of Medical Chemistry, 42: 125–137.
Oszmiański J., Wolniak M., Wojdyło A., Wawer I. (2008): Influence of apple purée preparation and storage on polyphenol contents and antioxidant activity. Food Chemistry, 107: 1473–1484.
Petkovsek M.J., Stampar F., Veberic R. (2007): Parameters of inner quality of the apple scab resistant and susceptible apple cultivars (Malus domestica Borkh.). Scientia Horticulturae, 114: 37–44.
Schieber A., Keller P., Carle R. (2001): Determination of phenolic acids and flavonoids of apple and pear by high liquid chromatography. Journal of Chromatography A, 910: 265–273.
Spanos G.A., Wrolstad R.E., Heatherbell D.A. (1990): Influence of processing and storage on the phenolic composition of apple juice. Journal of Agricultural and Food Chemistry, 38: 1572–1579.
Spinelli F.R., Dutra S.V., Carnieli G., Leonardelli S., Drehmer A.P., Vanderlinde R. (2016): Detection of addition of apple juice in purple grape juice. Food Control, 69: 1–4.
Suárez B., Palacios N., Fraga N., Rodríguez R. (2005): Liquid chromatographic method for quantifying polyphenols in ciders by direct injection. Journal of Chromatography A, 1066: 105–110.
Tanriöven D., Ekşi A. (2005): Phenolic compounds in pear juice from different cultivars. Food Chemistry, 93: 89–93.
Tsao R., Yang R., Young J.C., Zhu H. (2003): Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). Journal of Agricultural and Food Chemistry, 51: 6347–6353.
Turner A., Chen S.N., Joike M.K., Pendland S.L., Pauli G.F., Farnsworth N.R. (2005): Inhibition of uropathogenic Eschirichia coli by cranberry juice: A new antiadherence assay. Journal of Agricultural and Food Chemistry, 53: 8940–8947.
Valavanidis A., Vlachogianni T., Psomas A., Zovoili A., Siatis V. (2009): Polyphenolic profile and antioxidant activity and conventional agricultural practises. International Journal of Food Science and Technology, 44: 1167–1175.
Vandercook C.E. (1977): Detection of adulteration in citrus juice beverages. Food Chemistry, 2: 219–233.
Versari A., Biesenbruch S., Barbanti D., Farnell P.J. (1997): Adulteration of fruit juices: dihydrochalcones as quality markers for apple juice identification. Lebensmittel Wissenschaft und Technologie, 30: 585–589.
Vrhovsek U., Rigo A., Tonon D., Mattivi F. (2004): Quantitation of polyphenols in different apple varieties. Journal of Agricultural and Food Chemistry, 52: 6532–6538.
Williams A.H. (1964): Dihydrochalcones: Their occurrence and use as indicators in chemical plant taxonomy. Nature, 202: 824–825.
Xu Y., Fan M., Ran J., Zhang T., Sun H., Dong M., Zhang Z., Zheng H. (2016): Variation in phenolic compounds and antioxidant activity in apple seeds of seven cultivars. Saudi Journal of Biological Sciences, 23: 379–388.
Zhou K., Hu L., Li P., Gong X., Ma F. (2017): Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in Malus species. Plant Science, 265: 131–145.
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti