Phloridzin as a marker for evaluation of fruit products authenticity

https://doi.org/10.17221/239/2020-CJFSCitation:

Hrubá M, Baxant J., Čížková H., Smutná V., Kovařík F., Ševčík R, Hanušová K., Rajchl A. (2021): Phloridzin as a marker for evaluation of a fruit product’s authenticity. Czech J. Food Sci., 39: 49–57.

download PDF

Abstract: Phloridzin (phloretin-2'-O-glucoside) is a phenolic compound characteristic of the genus Malus. This study aimed to evaluate phloridzin as a marker of undeclared addition of apples in fruit products. To test this proposal, the heat and oxidation stability of phloridzin was firstly confirmed. Then the distribution and variability of phloridzin in apples were studied, showing no difference between the tested apple varieties (Golden Delicious, Granny Smith, Rubin and Champion) but a significant difference in phloridzin content in seeds (2 380 ± 755 mg kg–1) compared to peel, flesh and core, which contained less than 70 mg kg–1. The effects of different stages of apple purée production at an industrial scale were also investigated. The kinetics of phloridzin diffusion from seeds to apple homogenate played an important role in the final phloridzin content in 16 analysed apple purées (26–39 mg kg–1). Finally, the survey of phloridzin content in 31 fruit products in the market was carried out. Phloridzin was also measured in eight jams and fillings which did not declare the presence of apples on their labels; findings from 2 to 6 mg kg–1 indicate the addition of apples from 5% to 20%. It was confirmed that phloridzin appears to be a suitable marker for detecting the undeclared presence of apples, which are a cheap substitute for the declared fruit types.

References:
Aguayo E., Requejo-Jackman C., Stanley R., Woolf A. (2010): Effects of calcium ascorbate treatments and storage atmosphere on antioxidant activity and quality of fresh-cut apple slices. Postharvest Biology and Technology, 57: 52–60. https://doi.org/10.1016/j.postharvbio.2010.03.001
 
Awad M.A., Jager A., Westing L.M. (2000): Flavonoid and chlorogenic acid levels in apple fruit characterisation of variation. Scientia Horticulturae, 83: 249–263. https://doi.org/10.1016/S0304-4238(99)00124-7
 
Awad M.A., Jager A. (2001): Flavonoid and chlorogenic acid concentrations in skin of ‘Jonagold’ and ‘Elstar’ apples during and after regular and ultra-low oxygen storage. Postharvest Biology and Technology, 20: 15–24. https://doi.org/10.1016/S0925-5214(00)00116-2
 
Bílková A., Baďurová K., Svobodová P., Vávra R., Jakubec P., Chocholouš P., Švec F., Sklenářová H. (2020): Content of major phenolic compounds in apples: Benefits of ultra-low oxygen conditions in long-term storage. Journal of Food Composition and Analysis, 92: 1–6.  https://doi.org/10.1016/j.jfca.2020.103587
 
Burda S., Oleszek W., Lee C.Y. (1990): Phenolic compounds and their changes in apples during maturation and cold storage. Journal of Agricultural and Food Chemistry, 38: 945–948. https://doi.org/10.1021/jf00094a006
 
Cook N.C., Samman S. (1996): Flavonoids-Chemistry, metabolism, cardioprotective effects, and dietary sources. Nutritional Biochemistry, 7: 66–76. https://doi.org/10.1016/0955-2863(95)00168-9
 
Cunja V., Mikulic-Petkovsek M., Zupan A., Stampar F., Schmitzer V. (2015): Frost decreases content of sugars, ascorbic acid and some quercetin glycosides but stimulates selected carotenes in Rosa canina hips. Journal of Plant Physiology, 178: 55–63. https://doi.org/10.1016/j.jplph.2015.01.014
 
Dragovic-Uzelac V., Pospisil J., Levaj B., Delonga K. (2005): The study of phenolic profiles of raw apricots and apples and their purees by HPLC for the evaluation of apricot nectars and jams authenticity. Food Chemistry, 91: 373–383. https://doi.org/10.1016/j.foodchem.2004.09.004
 
Escarpa A., González M.C. (1998): High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. Journal of Chromatography A, 823: 331–337. https://doi.org/10.1016/S0021-9673(98)00294-5
 
Feliciano R.P., Antunes C., Ramos A., Serra A.T., Figueira M.E., Duarte C.M.M. et al. (2010): Characterisation of traditional and exotic apple varieties from Portugal. Part 1 – Nutritional, phytochemical and sensory evaluation. Journal of Functional Foods, 2: 35–45. https://doi.org/10.1016/j.jff.2009.12.004
 
Fügel R., Carle R., Schieber A. (2005): Quality and authenticity control of fruit purées, fruit preparations and jams—a review. Trends in Food Science & Technology, 16: 433–441.
 
Gomis D.B., Palomino N.F., Alonso J.J.M. (2001): Capillary liquid chromatographic determination of neutral phenolic compounds in apple juices. Analytica Chimica Acta, 426: 111–117. https://doi.org/10.1016/S0003-2670(00)01171-5
 
Gosch C., Halbwirth H., Kuhn J., Miosic S., Stich K. (2009): Biosynthesis of phloridzin in apple (Malus domestica Borkh.). Plant Science, 176: 223–231.  https://doi.org/10.1016/j.plantsci.2008.10.011
 
Gosch C., Halbwirth H., Stich K. (2010): Phloridzin: Biosynthesis, distribution and physiological relevance in plants. Phytochemistry, 71: 838–843. https://doi.org/10.1016/j.phytochem.2010.03.003
 
Górnaś P., Mišina I., Olšteine A., Krasnova I., Pugajeva I., Lācis G., Siger A., Michalak M., Soliven A., Segliņa D. (2015): Phenolic compounds in different fruit parts of crab apple: Dihydrochalcones as promising quality markers of industrial apple pomace by-products. Industrial Crops and Products, 74: 607–612. https://doi.org/10.1016/j.indcrop.2015.05.030
 
Hilt P., Schieber A., Yildirim C., Arnold G., Klaiber I., Conrad J. et al. (2003): Detection of phloridzin in strawberries (Fragaria x ananassa Duch.) by HPLC-PDA-MS/MS and NMR spectroscopy. Journal of Agricultural and Food Chemistry, 51: 2896–2899. https://doi.org/10.1021/jf021115k
 
Iwashina T. (2000): The structure and distribution of the flavonoids in plants. Journal of Plant Research, 113: 287–299. https://doi.org/10.1007/PL00013940
 
Jham G.N. (1996): High-performance liquid chromatographic quantitation of phloridzin in apple seed, leaf and callus. Journal of Chromatography A, 719: 444–449. https://doi.org/10.1016/0021-9673(95)00754-7
 
Jayasankar N.P., Bandoni R.J., Towers G.H.N. (1969): Fungal degradation of phloridzin. Phytochemistry, 8: 379–383. https://doi.org/10.1016/S0031-9422(00)85434-5
 
Kamiloglu S. (2019): Authenticity and traceability in beverages. Food Chemistry, 277: 12–24. https://doi.org/10.1016/j.foodchem.2018.10.091
 
Karaman S., Tütem E., Başkan K.S., Apak R. (2010): Comparison of total antoxidant capacity and phenolic composition of some apple juices with combined HPLC-CUPRAC assay. Food Chemistry, 120: 1201–1209. https://doi.org/10.1016/j.foodchem.2009.11.065
 
Kermasha S., Goetghebeur M., Dumont J., Couture R. (1995): Analyses of phenolic and furfural compounds in concentrated and non-concentrated apple juices. Food Research International, 28: 245–252. https://doi.org/10.1016/0963-9969(94)00046-B
 
Khanizadeh S., Tsao R., Rekika D., Yang R., Charles M.T., Rupasinghe H.P.V. (2008): Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. Journal of Food Composition and Analysis, 21: 396–401. https://doi.org/10.1016/j.jfca.2008.03.004
 
Kun Z., Lingyu H., Pengmin L., Xiaoqing G., Fengwang M. (2017): Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in Malus species. Plant Science, 265: 131–145. https://doi.org/10.1016/j.plantsci.2017.10.003
 
Łata B., Trampczynska A., Paczesna J. (2009): Cultivar variation in apple peel and whole fruit phenolic composition. Scientia Horticulturae, 121: 176–181. https://doi.org/10.1016/j.scienta.2009.01.038
 
Lee K.W., Kim Y.J., Kim D., Lee H.J., Lee C.Y. (2003): Major phenolics in apple and their contribution to the total antioxidant capacity. Journal of Agricultural and Food Chemistry, 51: 6516–6520. https://doi.org/10.1021/jf034475w
 
Lin L.Z., Mukhopadhyay S., Robbins R.J., Harnly J.M. (2007): Indentification and quantification of flavonoids of Mexican oregano (Lippia graveolens) by LC-DAD-ESI/MS analysis. Journal of Food Composition and Analysis, 20: 361–369. https://doi.org/10.1016/j.jfca.2006.09.005
 
Nowakowska Z. (2006): A review of anti-infective and anti-inflammatory chalcones. European Journal of Medical Chemistry, 42: 125–137. https://doi.org/10.1016/j.ejmech.2006.09.019
 
Oszmiański J., Wolniak M., Wojdyło A., Wawer I. (2008): Influence of apple purée preparation and storage on polyphenol contents and antioxidant activity. Food Chemistry, 107: 1473–1484. https://doi.org/10.1016/j.foodchem.2007.10.003
 
Petkovsek M.J., Stampar F., Veberic R. (2007): Parameters of inner quality of the apple scab resistant and susceptible apple cultivars (Malus domestica Borkh.). Scientia Horticulturae, 114: 37–44. https://doi.org/10.1016/j.scienta.2007.05.004
 
Schieber A., Keller P., Carle R. (2001): Determination of phenolic acids and flavonoids of apple and pear by high liquid chromatography. Journal of Chromatography A, 910: 265–273. https://doi.org/10.1016/S0021-9673(00)01217-6
 
Spanos G.A., Wrolstad R.E., Heatherbell D.A. (1990): Influence of processing and storage on the phenolic composition of apple juice. Journal of Agricultural and Food Chemistry, 38: 1572–1579. https://doi.org/10.1021/jf00097a031
 
Spinelli F.R., Dutra S.V., Carnieli G., Leonardelli S., Drehmer A.P., Vanderlinde R. (2016): Detection of addition of apple juice in purple grape juice. Food Control, 69: 1–4. https://doi.org/10.1016/j.foodcont.2016.04.005
 
Suárez B., Palacios N., Fraga N., Rodríguez R. (2005): Liquid chromatographic method for quantifying polyphenols in ciders by direct injection. Journal of Chromatography A, 1066: 105–110. https://doi.org/10.1016/j.chroma.2005.01.022
 
Tanriöven D., Ekşi A. (2005): Phenolic compounds in pear juice from different cultivars. Food Chemistry, 93: 89–93.  https://doi.org/10.1016/j.foodchem.2004.09.009
 
Tsao R., Yang R., Young J.C., Zhu H. (2003): Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). Journal of Agricultural and Food Chemistry, 51: 6347–6353. https://doi.org/10.1021/jf0346298
 
Turner A., Chen S.N., Joike M.K., Pendland S.L., Pauli G.F., Farnsworth N.R. (2005): Inhibition of uropathogenic Eschirichia coli by cranberry juice: A new antiadherence assay. Journal of Agricultural and Food Chemistry, 53: 8940–8947. https://doi.org/10.1021/jf052035u
 
Valavanidis A., Vlachogianni T., Psomas A., Zovoili A., Siatis V. (2009): Polyphenolic profile and antioxidant activity and conventional agricultural practises. International Journal of Food Science and Technology, 44: 1167–1175. https://doi.org/10.1111/j.1365-2621.2009.01937.x
 
Vandercook C.E. (1977): Detection of adulteration in citrus juice beverages. Food Chemistry, 2: 219–233. https://doi.org/10.1016/0308-8146(77)90036-X
 
Versari A., Biesenbruch S., Barbanti D., Farnell P.J. (1997): Adulteration of fruit juices: dihydrochalcones as quality markers for apple juice identification. Lebensmittel Wissenschaft und Technologie, 30: 585–589. https://doi.org/10.1006/fstl.1996.0229
 
Vrhovsek U., Rigo A., Tonon D., Mattivi F. (2004): Quantitation of polyphenols in different apple varieties. Journal of Agricultural and Food Chemistry, 52: 6532–6538. https://doi.org/10.1021/jf049317z
 
Williams A.H. (1964): Dihydrochalcones: Their occurrence and use as indicators in chemical plant taxonomy. Nature, 202: 824–825. https://doi.org/10.1038/202824b0
 
Xu Y., Fan M., Ran J., Zhang T., Sun H., Dong M., Zhang Z., Zheng H. (2016): Variation in phenolic compounds and antioxidant activity in apple seeds of seven cultivars. Saudi Journal of Biological Sciences, 23: 379–388. https://doi.org/10.1016/j.sjbs.2015.04.002
 
Zhou K., Hu L., Li P., Gong X., Ma F. (2017): Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in Malus species. Plant Science, 265: 131–145. https://doi.org/10.1016/j.plantsci.2017.10.003
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti