Genetic features of Czech blue poppy (Papaver somniferum L.) revealed by DNA polymorphism

https://doi.org/10.17221/23/2020-CJFSCitation:Svoboda P., Vašek J., Vejl P., Ovesná J. (2020): Genetic features of Czech blue poppy (Papaver somniferum L.) revealed by DNA polymorphism. Czech J. Food Sci., 38: 198-202.
download PDF

Seeds of Czech poppies used for culinary purposes are frequently mixed with seeds of imported low-quality poppies with higher alkaloid content and poor taste properties. That not only decreases the quality of the product on the market, but it can also represent a potential health hazard for consumers. To prevent such adulteration, the method is needed that could clearly detect the presence of the low-quality poppies in the products on the market and which can also confirm the authenticity of the genetic material for growers. For that reason, length polymorphism of Simple Sequence Repeats was evaluated in the blue and non-blue poppy varieties of Czech and foreign origin. Used markers clearly distinguished ‘Czech blue poppy’ cultivars from blue poppies of another origin as well as from poppies of non-blue seed colour. We conclude that used markers can be applied to a commodity verification on the market to detect/exclude the presence of other genotypes.

References:
Bohme K., Calo-Mata P., Barros-Velazquez J., Ortea I. (2019): Review of recent dna-based methods for main food-authentication topics. Journal of Agricultural and Food Chemistry, 67: 3854–3864. https://doi.org/10.1021/acs.jafc.8b07016
 
Botstein D., White R.L., Skolnick M., Davis R.W. (1980): Construction of a genetic-linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32: 314–331.
 
Brinkmann B., Junge A., Meyer E., Wiegand P. (1998): Population genetic diversity in relation to microsatellite heterogeneity. Human Mutation, 11: 135–144. https://doi.org/10.1002/(SICI)1098-1004(1998)11:2<135::AID-HUMU6>3.0.CO;2-I
 
Celik I., Camci H., Kose A., Kosar F.C., Doganlar S., Frary A. (2016): Molecular genetic diversity and association mapping of morphine content and agronomic traits in Turkish opium poppy (Papaver somniferum) germplasm. Molecular Breeding, 36: 46. https://doi.org/10.1007/s11032-016-0469-8
 
Corrado G. (2016): Advances in DNA typing in the agro-food supply chain. Trends in Food Science & Technology, 52: 80–89.
 
Eisenreich A., Sachse B., Gürtler R., Dusemund B., Lindtner O., Schäfer B. (2019): What do we know about health risks related to thebaine in food? Food Chemistry, 309: 125564. https://doi.org/10.1016/j.foodchem.2019.125564
 
Garrido-Cardenas J.A., Mesa-Valle C., Manzano-Agugliaro F. (2018): Trends in plant research using molecular markers. Planta, 247: 543–557. https://doi.org/10.1007/s00425-017-2829-y
 
Gol A., Doganlar S., Frary A. (2017): Relationship between geographical origin, seed size and genetic diversity in faba bean (Vicia faba L.) as revealed by SSR markers. Molecular Genetics and Genomics, 292: 991–999. https://doi.org/10.1007/s00438-017-1326-0
 
Iqbal A., Sadaqat H.A., Khan A.S., Amjad M. (2011): Identification of sunflower (Helianthus annuus, Asteraceae) hybrids using simple-sequence repeat markers. Genetics and Molecular Research, 10: 102–106. https://doi.org/10.4238/vol10-1gmr918
 
Iquebal M.A., Sarika, Arora V., Verma N., Rai A., Kumar D. (2013): First whole genome based microsatellite DNA marker database of tomato for mapping and variety identification. Bmc Plant Biology, 13: 197 https://doi.org/10.1186/1471-2229-13-197
 
Kejnovsky E., Hobza R., Cermak T., Kubat Z., Vyskot B. (2009): The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity, 102: 533–541. https://doi.org/10.1038/hdy.2009.17
 
Labanca F., Ovesnà J., Milella L. (2018): Papaver somniferum L. taxonomy, uses and new insight in poppy alkaloid pathways. Phytochemistry reviews, 17: 853–871. https://doi.org/10.1007/s11101-018-9563-3
 
Liscombe D.K., Facchini P.J. (2008): Evolutionary and cellular webs in benzylisoquinoline alkaloid biosynthesis. Current Opinion in Biotechnology, 19: 173–180. https://doi.org/10.1016/j.copbio.2008.02.012
 
Lopez P., Pereboom-de Fauw D.P.K.H.P., Mulder P.P.J., Spanjer M., de Stoppelaar J., Mol H.G.J., de Nijs M. (2018): Straightforward analytical method to determine opium alkaloids in poppy seeds and bakery products. Food Chemistry, 242: 443–450. https://doi.org/10.1016/j.foodchem.2017.08.045
 
McGregor C.E., Lambert C.A., Greyling M.M., Louw J.H., Warnich L. (2000): A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica, 113: 135–144. https://doi.org/10.1023/A:1003925620546
 
Morgante M., Olivieri A.M. (1993): Pcr-Amplified Microsatellites as Markers in Plant Genetics. Plant Journal, 3: 175–182. https://doi.org/10.1046/j.1365-313X.1993.t01-9-00999.x
 
Ovesna J., Leisova-Svobodova L., Kucera L. (2014): Microsatellite analysis indicates the specific genetic basis of czech bolting garlic. Czech Journal of Genetics and Plant Breeding, 50: 226–234. https://doi.org/10.17221/82/2014-CJGPB
 
Schiff P.L. (2002): Opium and its alkaloids. American Journal of Pharmaceutical Education, 66: 186–194.
 
Suzuki R., Shimodaira H. (2006): Pvclust: An R package for assessing the uncertainty in hierarchical clustering. Bioinformatics, 22: 1540–1542. https://doi.org/10.1093/bioinformatics/btl117
 
Vašák J. (2008): Poppy and mustard as national specialties. Úroda, 56: 35 –38. (In Czech)
 
Vašek J., Čílová D., Melounová M., Svoboda P., Vejl P., Štikarová R., Vostrý L., Kuchtová P., Ovesná J. (2020): New EST-SSR markers for individual genotyping of opium poppy cultivars (Papaver somniferum L.). Plants, 9: 10. https://doi.org/10.3390/plants9010010
 
Zhao Y.N., Wang Y., Wang L.X., Zhang D.J. (2019): Molecular identification of mung bean accessions (Vigna radiata L.) from Northeast China using capillary electrophoresis with fluorescence-labeled SSR markers. Food and Energy Security, 9: e182.
 
download PDF

© 2020 Czech Academy of Agricultural Sciences