Natural bioactive compounds of honey and their antimicrobial activity

https://doi.org/10.17221/247/2021-CJFSCitation:

Feknous N., Boumendjel M. (2022): Natural bioactive compounds of honey and their antimicrobial activity. Czech J. Food Sci., 40: 163–178.

download PDF

Honey is a complex and variable mixture that contains more than 180 biochemical compounds from various molecule families. This mixture is obtained after processing the nectar out of plant food sources at the level of the bee abdomen. The bioactive components found in this natural product are in charge of its antimicrobial properties. Honey is used for its antibacterial actions against Gram-positive (Gram+) and Gram-negative (Gram–) bacteria, its anti-fungal and antimycotic actions against moulds and yeasts, along with its protozoal and antiviral activities. This literature review outlines the natural antimicrobial potential of honey; it explains the factors responsible for this potential and spells out their mechanisms of action. Osmotic pressure, water activity, the acid content of honey, presence of bioactive compounds like hydrogen peroxide (H2O2), phenolic acids, flavonoids, methylglyoxal (MGO), defensin-1, lysozyme, volatile compounds as well as antibacterial products secreted from the lactic bacteria that are behind this antimicrobial activity. This potential basically depends on the biological activities of the initially harvested floral source, its geographical origin, season, storage conditions, honey age, health of bee colonies and suitable beekeeping practices.

References:
Abd El-Moaty H.I. (2010): Essential oil and iridoide glycosides of Nepeta septemcrenata Erenb. Journal of Natural Products, 3: 103–111.
 
Abdel-Naby Awad O.G., Hamad A.M.H. (2018): Honey can help in herpes simplex gingivostomatitis in children: Prospective randomized double blind placebo controlled clinical trial. American Journal of Otolaryngology, 39: 759–763. https://doi.org/10.1016/j.amjoto.2018.09.007
 
Abdulrhman M.M., El-Hefnawy M.H., Aly R.H., Shatla R.H., Mamdouh R.M., Mahmoud D.M., Mohamed W.S. (2013): Metabolic effects of honey in type 1 diabetes mellitus: A randomized crossover pilot study. Journal of Medicinal Food, 16: 66–72. https://doi.org/10.1089/jmf.2012.0108
 
Abdulrhman M.A., Shatla R.H., Mohamed S.A. (2016): The effects of honey supplementation on Egyptian children with hepatitis A: A randomized double blinded placebo-controlled pilot study. Journal of Apitherapy, 1: 23. https://doi.org/10.5455/ja.20160702011113
 
Adams C.J., Manley-Harris M., Molan P.C. (2009): The origin of methylglyoxal in New Zealand Manuka (Leptospermum scoparium) honey. Carbohydrate Research, 344: 1050–1053. https://doi.org/10.1016/j.carres.2009.03.020
 
Adcock D. (1962): The effect of catalase on inhibine and peroxide values of various honeys. Journal of Apicultural Research, 1: 38–40. https://doi.org/10.1080/00218839.1962.11100047
 
Adebolu T. (2005): Effect of natural honey on local isolates of diarrhea-causing bacteria in southwestern Nigeria. African Journal of Biotechnology, 4: 1172–1174.
 
Ahmadi-Motamayel F., Hendi S.S., Alikhani M.Y., Khamverdi Z. (2013): Antibacterial activity of honey on cariogenic bacteria. Journal of Dental (Tehran), 10: 10–15.
 
Ahmed A.K., Hoekstra M.J., Hage J., Karim R.B. (2003): Honey-medicated dressing: Transformation of an ancient remedy into modern therapy. Annals of Plastic Surgery, 50: 143–148. https://doi.org/10.1097/01.SAP.0000032306.44107.C1
 
Ahmed S., Othman H.N. (2013): Review of the medicinal effects of Tualang honey and a comparison with Manuka honey. Malaysian Journal of Medical Sciences, 20: 6–13.
 
Aksoy T., Sivcan E., Doğan F., Çetin S., Yar T.M. (2020): Investigation of anti-leishmanial effects of bee products (honey, propolis) on Leishmania tropica promastigotes. Mikrobiyoloji Bülteni, 54: 479–489. https://doi.org/10.5578/mb.69632
 
Almasaudi S. (2021): The antibacterial activities of honey. Saudi Journal of Biological Sciences, 28: 2188–2196. https://doi.org/10.1016/j.sjbs.2020.10.017
 
Alvarez-Suarez J.M., Gasparrini M., Forbes-Hernández T.Y., Mazzoni L., Giampieri F. (2014): The composition and biological activity of honey: A focus on Manuka honey. Foods, 3: 420–432. https://doi.org/10.3390/foods3030420
 
Alvarez-Suarez J.M., Tulipani S., Dıaz D., Estevez Y., Romandini S., Giampieri F., Damiani E., Astolfi P., Bompadre S., Battino M. (2010): Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food and Chemical Toxicology, 48: 2490–2499. https://doi.org/10.1016/j.fct.2010.06.021
 
Al-Waili N.S., Haq A. (2004): Effect of honey on antibody production against thymus-dependent and thymus-independent antigens in primary and secondary immune responses. Journal of Medicinal Food, 7: 491–494. https://doi.org/10.1089/jmf.2004.7.491
 
Al-Waili N.S., Salom K., Butler G., Al Ghamdi A.A. (2011): Honey and microbial infections: A review supporting the use of honey for microbial control. Journal of Medicinal Food, 14: 1079–1096. https://doi.org/10.1089/jmf.2010.0161
 
Amenu D. (2013): The antibacterial activity of honey. International Journal of Current Research and Academic Review, 1: 102–116.
 
Anthimidou E., Mossialos D. (2013): Antibacterial activity of Greek and Cypriot honeys against Staphylococcus aureus and Pseudomonas aeruginosa in comparison to Manuka honey. Journal of Medicinal Food, 16: 42–47. https://doi.org/10.1089/jmf.2012.0042
 
Aronstein K.A., Murray K.D., Saldivar E. (2010): Transcriptional responses in honey bees larvae infected with chalkbrood fungus. BMC Genomics, 11: 1–12. https://doi.org/10.1186/1471-2164-11-391
 
Asadi-Pooya A., Pnjehshahin M., Beheshti S. (2003): The antimycobacterial effect of honey: An in vitro study. Rivista di Biologia, 66: 491–496.
 
Atrott J., Henle T. (2009): Methylglyoxal in Manuka honey – Correlation with antibacterial properties. Czech Journal of Food Sciences, 27: S163–S165. https://doi.org/10.17221/911-CJFS
 
Aween M.M., Hassan Z., Muhialdin B.J., Noor H.M., Eljamel Y.A. (2012a): Evaluation on antibacterial activity of Lactobacillus acidophilus strains isolated from honey. American Journal of Applied Sciences, 9: 807–817.
 
Aween M.M., Zaiton H., Belal J.M., Yossra A.E., Asma S.W., Al-Mabrok M., Nizam L. (2012b): Antibacterial activity of Lactobacillus acidophilus strains isolated from honey marketed in Malaysia against selected multiple antibiotic resistant (MAR) Gram-positive bacteria. Journal of Food Science, 77: 364–371.
 
Bahiru B., Mehari T., Ashenafi M. (2006): Yeast and lactic acid flora of tej, an indigenous Ethiopian honey wine: Variations within and between production units. Food Microbiology, 23: 277–282. https://doi.org/10.1016/j.fm.2005.05.007
 
Bansal V., Medhi B., Pandhi P. (2005): Honey – A remedy discovered and its therapeutic utility. Kathmandu University Medical Journal, 3: 305–309.
 
Basualdo C., Sgroy V.N., Finola M.S., Marioli J.M. (2007): Comparison of the antibacterial activity of honey from different provenance against bacteria usually isolated from skin wounds. Veterinary Microbiology, 124: 375–81. https://doi.org/10.1016/j.vetmic.2007.04.039
 
Behbahani M. (2014): Anti-HIV-1 activity of eight monofloral Iranian honey types. PLoS One, 9: e108195. https://doi.org/10.1371/journal.pone.0108195
 
Belhaj O., Oumato J., Zrira S. (2015): Physico-chemical study of some types of Moroccan honey (Etude physico-chimiques de quelques types de miels Marocains). Revue Marocaine des Sciences Agronomiques et Vétérinaires, 3: 71–75. (in French)
 
Bogdanov S., Blumer P. (2001): Natural Antibiotic Properties of Honey (Propriétés Antibiotiques Naturelles du Miel). Bern, Switzerland, Centre Suisse de Recherche Apicoles: 1–8. (in French)
 
Bogdanov S., Jurendic T., Sieber R., Gallmann P. (2008): Honey for nutrition and health: A review. Journal of the American College of Nutrition, 27: 677–689. https://doi.org/10.1080/07315724.2008.10719745
 
Bourlioux P. (2013): What alternatives does our anti-infective therapeutic arsenal have against multi-resistant bacteria? (De quelles alternatives notre arsenal thérapeutique anti-infectieux dispose-til face aux bactéries multi-résistantes?). Annales Pharmaceutiques Françaises, 71: 150–158. (in French) https://doi.org/10.1016/j.pharma.2013.02.005
 
Brudzynski K., Lannigan R. (2012): Mechanism of honey bacteriostatic action against MRSA and VRE involves hydroxyl radicals generated from honey's hydrogen peroxide. Frontiers in Microbiology, 3: 36. https://doi.org/10.3389/fmicb.2012.00036
 
Brudzynski K., Miotto D., Kim L., Sjaarda C., Maldonado-Alvarez L., Fukś H. (2017): Active macromolecules of honey form colloidal particles essential for honey antibacterial activity and hydrogen peroxide production. Scientific Reports, 7: 7637. https://doi.org/10.1038/s41598-017-08072-0
 
Bruneau E. (2006): Antibiotics in honey (Antibiotiques dans le miel). Abeille and Cie, 110: 26–28. (in French)
 
Bucekova M., Jardekova L., Juricova V., Bugarova V., Di Mar-co G., Gismondi A., Leonardi D., Farkasovska J., Godocikova J., Laho M., Klaudiny J., Majtan V., Canini A., Majtan J. (2019): Antibacterial activity of different blossom honeys: New findings. Molecules, 24: 1573. https://doi.org/10.3390/molecules24081573
 
Búfalo M.C., Figueiredo A.S., de Sousa J.P., Candeias J.M., Bastos J.K., Sforcin J.M. (2009): Anti-poliovirus activity of Baccharis dracunculifolia and propolis by cell viability determination and real-time PCR. Journal of Applied Microbiology, 107: 1669–1680. https://doi.org/10.1111/j.1365-2672.2009.04354.x
 
Bulet P., Stocklin R. (2005): Insect antimicrobial peptides: Structures, properties and gene regulation. Protein and Peptide Letters, 12: 3–11. https://doi.org/10.2174/0929866053406011
 
Bulgasem Y., Bulgasem M., Nizam L., Zaiton H., Wan M., Wan Y., Sumaya G.F. (2016): Antifungal activity of lactic acid bacteria strains isolated from natural honey against pathogenic Candida species. Mycobiology, 44: 302–309. https://doi.org/10.5941/MYCO.2016.44.4.302
 
Candiracci M., Citterio B., Diamantini G., Blasa M., Accorsi A., Piatti E. (2011): Honey flavonoids, natural antifungal agents against Candida albicans. International Journal of Food Properties, 14: 799–808. https://doi.org/10.1080/10942910903453355
 
Castro-Vázquez L.M., Díaz-Maroto M.C., Guchu E., Pérez-Coello M.S. (2006): Analysis of volatile compounds of eucalypt honey by solid phase extraction followed by gas chromatography coupled to mass spectrometry. European Food Research and Technology, 224: 27–31. https://doi.org/10.1007/s00217-006-0284-2
 
Castro-Vázquez L., Díaz-Maroto M.C., González-Viñas M.A., Pérez-Coelloet M.S. (2009): Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food Chemistry, 112: 1022–1030. https://doi.org/10.1016/j.foodchem.2008.06.036
 
Cavanagh D., Beazley J., Ostapowicz F. (1970): Radical operation for carcinoma of the vulva. A new approach to wound healing. Journal of Obstetrics and Gynaecology of the British Commonwealth, 77: 1037–1040. https://doi.org/10.1111/j.1471-0528.1970.tb03455.x
 
Chang X., Wang J., Yang S., Chen S., Songet Y. (2011): Antioxidative, antibrowning and antibacterial activities of sixteen floral honeys. Food and Function, 2: 541–546. https://doi.org/10.1039/c1fo10072f
 
Charyasriwong S., Watanabe K., Rahmasari R., Matsunaga A., Haruyama T., Kobayashi N. (2015): In vitro evaluation of synergistic inhibitory effects of neuraminidase inhibitors and methylglyoxal against influenza virus infection. Archives of Medical Research, 46: 8–16. https://doi.org/10.1016/j.arcmed.2014.12.002
 
Chemspider (2022): Database of Chemical Structures. [Dataset]. Royal Society of Chemistry, ChemSpider: The Free Chemical Database. Available at http://www.chemspider.com/ (accessed May 27, 2022).
 
Chen L., Mehta A., Berenbaum M., Zangerl A.R., Engeseth N.J. (2000): Honeys from different floral sources as inhibitors of enzymatic browning in fruit and vegetable homogenates. Journal of Agricultural and Food Chemistry, 48: 4997–5000. https://doi.org/10.1021/jf000373j
 
Chua L.S., Lee J.Y., Chan G.F. (2015): Characterization of the proteins in honey. Analytical Letters, 48: 697–709. https://doi.org/10.1080/00032719.2014.952374
 
Cimpoiu C., Hosu A., Miclaus V., Puscas A. (2013): Determination of the floral origin of some Romanian honeys on the basis of physical and biochemical properties. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 100: 149–154. https://doi.org/10.1016/j.saa.2012.04.008
 
Cooke J., Dryden M., Patton T., Brennan J., Barrett J. (2015): The antimicrobial activity of prototype modified honeys that generate reactive oxygen species (ROS) hydrogen peroxide. BMC Research Notes, 8: 20. https://doi.org/10.1186/s13104-014-0960-4
 
Cooper R., Jenkins L., Hooper S. (2014): Inhibition of biofilms of Pseudomonas aeruginosa by Medihoney in vitro. Journal of Wound Care, 23: 93–104. https://doi.org/10.12968/jowc.2014.23.3.93
 
Cortopassi-Laurino M., Gelli D.S. (1991): Pollen analysis, physico-chemical properties and antibacterial action of honeys from Africanized bees Apis mellifera and Meliponines from Brazil (Analyse pollinique, propriétés physico-chimiques et action antibactérienne des miels d'abeilles africanisées Apis mellifera et de Méliponinés du Brésil). Apidologie, 22: 61–73. (in French) https://doi.org/10.1051/apido:19910108
 
Couquet Y., Alexis D., Rigal M.L. (2013): The antibacterial and healing properties of honey (Les propriétés antibactériennes et cicatrisantes du miel). Actualités Pharmaceutiques, 52: 22–25. (in French)
 
Da Silva P.M., Gauche C., Gonzaga L.V., Costa A.C.O., Fett R. (2016): Honey: Chemical composition, stability and authenticity. Food Chemistry, 196: 309–323. https://doi.org/10.1016/j.foodchem.2015.09.051
 
Dai J., Mumper R.J. (2010): Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15: 7313–7352. https://doi.org/10.3390/molecules15107313
 
Daniels B.J., Prijic G., Meidinger S., Loomes K.M., Stephens J.M., Schlothauer R.C., Furkert D.P., Brimble M.A. (2016): Isolation, structural elucidation, and synthesis of lepteridine from Manuka (Leptospermum scoparium) honey. Journal of Agricultural and Food Chemistry, 64: 5079–5084. https://doi.org/10.1021/acs.jafc.6b01596
 
Danila C., Tamara Yuliett F.H., Francesca G., Jiaojiao Z., Johura A., Mattia P., Josè L.Q., Jesus S.G., Maurizio B. (2020). Effect of in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds and antioxidant activity of Manuka honey. eFood, 1: 85–93. https://doi.org/10.2991/efood.k.191011.001
 
De Vuyst L., Leroy F. (2007): Bacteriocins from lactic acid bacteria: Production, purification, and food applications. Journal of Molecular Microbiology and Biotechnology, 13: 194–199.
 
Desmouliere A., Bonte F., Couquet Y., Rigal M.L. (2013): Honey, which benefit in healing? (Le miel, quel intérêt en cicatrisation?). Actualités Pharmaceutiques, 52: 17–35. (in French)
 
Di Girolamo F., D'Amato A., Righetti P.G. (2012): Assessment of the floral origin of honey via proteomic tools. Journal of Proteomics, 75: 3688–3693. https://doi.org/10.1016/j.jprot.2012.04.029
 
Dimitrios S., Nikolaos S., Christina T., Stamatina P., Charalampos A., Alexandros N., Fani K., Soultana A.A., Konstantinos P., Demetrios A.S., Demetrios K., Dimitris M. (2018): Antibacterial and antioxidant activity of different types of honey derived from Mount Olympus in Greece. International Journal of Molecular Medicine, 42: 726–734.
 
Djossou J.A., Tchobo F.P., Yédomonhan H., Alitonou A.G., Soumanou M.M. (2013): Evaluation of the physico-chemical characteristics of honey marketed in Cotonou (Evaluation des caractéristiques physico-chimiques des miels commercialisés à Cotonou). Tropicultura, 31: 163–169. (in French)
 
Donia M.S., Fricke W.F., Partensky F., Cox J., Elshahawi S.I., White J.R., Phillippy A.M., Schatz M.C., Piel J., Haygood M.G., Ravel J., Schmidt E.W. (2011): Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis. Proceedings of the National Academy of Sciences of USA, 108: E1423–E1432. https://doi.org/10.1073/pnas.1111712108
 
Dortu C., Thonart P. (2009): The bacteriocins of lactic acid bacteria: Characteristics and interests for the biopreservation of food products (Les bactériocines des bactéries lactiques: Caractéristiques et intérêts pour la bioconservation des produits alimentaires). Biotechnology, Agronomy, Society and Environment, 13: 143–154. (in French)
 
El Sohaimy S.A., Masry S.H.D., Shehata M.G. (2015): Physicochemical characteristics of honey from different origins. Annals of Agricultural Sciences, 60: 279–287. https://doi.org/10.1016/j.aoas.2015.10.015
 
El-Gendy M.M.A. (2010): In vitro, evaluation of medicinal activity of Egyptian honey from different floral sources as anticancer and antimycotic infective agents. Journal of Microbial and Biochemical Technology, 2: 118–123. https://doi.org/10.4172/1948-5948.1000035
 
El-Malek F.F.A., Yousef A.S., El-assar S.A. (2017): Hydrogel film loaded with new formula from Manuka honey for treatment of chronic wound infections. Journal of Global Antimicrobial Resistance, 11: 171–176. https://doi.org/10.1016/j.jgar.2017.08.007
 
Eteraf-Oskouei T., Najafi M. (2013): Traditional and modern uses of natural honey in human diseases: A review. Iranian Journal of Basic Medical Sciences, 16: 731–742.
 
Feás X., Estevinho L.M. (2011): A survey of the in vitro antifungal activity of heather (Erica sp.) organic honey. Journal of Medicinal Food, 14: 1284–1288. https://doi.org/10.1089/jmf.2010.0211
 
Feknous N., Ouchene L.L., Boumendjel M., Mekhancha D.E., Boudida Y., Chettoum A., Boumendjel A., Messarah M. (2021): Local honey goat milk yoghurt production. Process and quality control. Food Science and Technology, 42: 1–10.
 
Fernandes L., Ribeiro H., Oliveira A., Sanches Silva A., Freitas A., Henriques M., Rodrigues M.E. (2020): Portuguese honeys as antimicrobial agents against Candida species. Journal of Traditional and Complementary Medicine, 11: 130–136. https://doi.org/10.1016/j.jtcme.2020.02.007
 
Forsgren E., Olofsson T.C., Váasquez A., Fries I. (2010): Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie, 41: 99–108. https://doi.org/10.1051/apido/2009065
 
Frans T., Sias G., Itzhak G. (2001): The antifungal action of three South African honeys on Candida albicans. Apidologie, 32: 371–379. https://doi.org/10.1051/apido:2001137
 
Giovanni C., Filippo F., Matilde M., Simona S., Barbara T., Leonora A., Antonio F., Miroslava K. (2020): Antibacterial activity of honey samples from Ukraine. Veterinary Sciences, 7: 181. https://doi.org/10.3390/vetsci7040181
 
Goetz P. (2009): Honey as a local disinfectant and wound healing treatment (Le miel comme traitement local désinfectant et cicatrisant des plaies). Phytothérapie, 7: 91–93. (in French) https://doi.org/10.1007/s10298-009-0374-y
 
Gradvol V., Atlaban N., Lenart L., Pavlović H. (2015): Microbiological quality and inhibitory potential of selected Croatian apiary honeys. Croatian Journal of Food Science and Technology, 7: 40–46. https://doi.org/10.17508/CJFST.2015.7.2.07
 
Gupta R.K., Rybroeck W., Johan W.R. (2014). Beeking for Poverty Alleviation and Livelihood Security. Berlin, Germany, Springer: 114.
 
Guttentag A., Krishnakumar K., Cokcetin N., Hainsworth S., Harry E., Carter D. (2021): Inhibition of dermatophyte fungi by Australian jarrah honey. Pathogens, 10: 194.  https://doi.org/10.3390/pathogens10020194
 
Haderbache L., Annou S., Mohammedi A. (2020): Antimicrobial potential of Ziziphus and Euphorbia honeys harvested in semi-arid region of Algeria and their possible use in soft medicine. Journal of Microbiology, Biotechnology and Food Sciences, 9: 1114–1118. https://doi.org/10.15414/jmbfs.2020.9.6.1114-1118
 
Hannan A., Munir S., Arshad M.U., Bashir N. (2014): In vitro antimycobacterial activity of Pakistani beri honey using BACTEC MGIT 960. International Scholarly Research Notices, 2014: 490589. https://doi.org/10.1155/2014/490589
 
Hananeh W.M., Ismail Z.B., Alshehabat M.A., Mahmoud A.A., Ali J.H. (2015). Effects of Sidr honey on second-intention healing of contaminated full-thickness skin wounds in healthy dogs. Bulletin of the Veterinary Institute in Pulawy, 59: 433–439. https://doi.org/10.1515/bvip-2015-0063
 
Hasali N.H.M., Zamri A.I., Lani M.N., Mubarak A., Suhaili Z. (2015): Identification of lactic acid bacteria from Meliponine honey and their antimicrobial activity against pathogenic bacteria. American-Eurasian Journal of Sustainable Agriculture, 9: 1–6.
 
Hashemipour M.A., Tavakolineghad Z., Arabzadeh S.A.M., Iranmanesh Z., Nassab S.A.H.G. (2014): Antiviral activities of honey, royal jelly, and acyclovir against HSV-1. Wounds, 26: 47–54.
 
Hegazi A.G., Al Guthami F.M., Al Gethami A.F., Allah F.M.A., Saleh A.A., Fouad E.A. (2017): Potential antibacterial activity of some Saudi Arabia honey. Veterinary World, 10: 233. https://doi.org/10.14202/vetworld.2017.233-237
 
Hegazi Ahmed G., Al Guthami Faiz M., Al Gethami Ahmed F.M., Fouad Ehab A. (2020): Antibacterial and antioxidant activities of some Saudi Arabia honey products. Iranian Journal of Medical Microbiology, 14: 490–500. https://doi.org/10.30699/ijmm.14.5.490
 
Hern T.T., Rosliza A.R., Siew H.G., Ahmad S.H., Siti A., Hassan S., Amrah S., Kirnpal-Kaur B.S. (2009): The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to Manuka honey. BMC Complementary and Alternative Medicine, 9: 34. https://doi.org/10.1186/1472-6882-9-34
 
Homrani M., Dalache F., Bouzouina M., Nemiche S., Homrani A. (2019): Antibacterial activities of Algerian raw honeys and isolated Lactobacillus against Gram-negative bacteria. Advances in Bioresearch, 10: 31–39.
 
Hosny I., El-Ghani S.A., Nadir A.S. (2009): Nutrient composition and microbiological quality of three unifloral honeys with emphasis on processing of honey probiotic youghurt. Global Veterinaria, 3: 107–112.
 
Hussain M.B., Abdul H., Naeem A., Ghulam Q.F., Muhammad I., Sidrah S., Imtiaz A.Q. (2015): Pakistani honeys against multi-drug resistant Salmonella typhi. Complementary and Alternative Medicine, 15: 32. https://doi.org/10.1186/s12906-015-0549-z
 
Huttunen S., Riihinen K., Kauhanen J., Tikkanen-Kaukanen C. (2013): Antimicrobial activity of different Finnish monofloral honeys against human pathogenic bacteria. Acta Pathologica, Microbiologica et Immunologica Scandinavica, 121: 827–34. https://doi.org/10.1111/apm.12039
 
Ibarguren C., Raya R.R., Apella M.C., Audisio M.C. (2010): Enterococcus faecium isolated from honey synthesized bacteriocin-like substances active against different Listeria monocytogenes strains. Journal of Microbiology, 48: 44–52. https://doi.org/10.1007/s12275-009-0177-8
 
Igado O., Omobowale T., Nottidge H. (2010): The effect of honey and vitamin C on the response of dogs to anti-rabies vaccination. Sahel Journal of Veterinary, 9: 32–37.
 
Ilyasov R.A., Gaifullina L.R., Saltykova E.S., Poskryakov A.V., Nikolenko A.G. (2012): Review of the expression of antimicrobial peptide defensin in honey bees Apis mellifera L. Journal of Apicultural Science, 56: 115–124. https://doi.org/10.2478/v10289-012-0013-y
 
Irish J., Blair S., Carter D.A. (2011): The antibacterial activity of honey derived from Australian flora. PLoS One, 6: e18229. https://doi.org/10.1371/journal.pone.0018229
 
Irish J., Carter D.A., Shokohi T., Blair S.E. (2006): Honey has an antifungal effect against Candida species. Medical Mycology May, 44: 289–291. https://doi.org/10.1080/13693780500417037
 
Isla M.I., Craig A., Ordoñez R., Zampini C., Sayago J., Bedascarrasbure E., Alvarez A., Salomón V., Maldonado L. (2011): Physico chemical and bioactive properties of honeys from Northwestern Argentina. LWT – Food Science and Technology, 44: 1922–1930. https://doi.org/10.1016/j.lwt.2011.04.003
 
Jantakee K., Tragoolpua Y. (2015): Activities of different types of Thai honey on pathogenic bacteria causing skin diseases, tyrosinase enzyme and generating free radicals. Biological Research, 48: 4. https://doi.org/10.1186/0717-6287-48-4
 
Khan R.U., Naz S., Abudabos A.M. (2017): Towards a better understanding of the therapeutic applications and corresponding mechanisms of action of honey. Environmental Science and Pollution Research International, 24: 27755–27766. https://doi.org/10.1007/s11356-017-0567-0
 
Kilty S.J., Duval M., Chan F.T., Ferris W., Slinger R. (2011): Methylglyoxal: (Active agent of Manuka honey) in vitro activity against bacterial biofilms. International Forum of Allergy and Rhinology, 1: 348–350. https://doi.org/10.1002/alr.20073
 
Kıvrak Ş., Kıvrak Ì. (2017): Assessment of phenolic profile of Turkish honey. International Journal of Food Properties, 20: 864–876. https://doi.org/10.1080/10942912.2016.1188307
 
Klaenhammer T., Altermann E., Arigoni F., Bolotin A., Breidt F., Broadbent J., Cano R., Chaillou S., Deutscher J., Gasson M., van de Guchte M., Guzzo J., Hartke A., Hawkins T., Hols P., Hutkins R., Kleerebezem M., Kok J., Kuipers O., Lubbers M., Maguin E., McKay L., Mills D., Nauta A., Overbeek R., Pel H., Pridmore D., Saier M., van Sinderen D., Sorokin A., Steele J., O'Sullivan D., de Vos W., Weimer B., Zagorec M., Siezen R. (2002): Discovering lactic acid bacteria by genomics. Antonie Van Leeuwenhoek, 82: 29–58. https://doi.org/10.1023/A:1020638309912
 
Knight A. (2013): The therapeutic effects of honey. The Plymouth Student Scientist, 06: 375–385.
 
Küçük M., Kolayli S., Karaoğlu Ş., Ulusoy E., Baltaci C., Candan F. (2007): Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chemistry, 100: 526–536. https://doi.org/10.1016/j.foodchem.2005.10.010
 
Kurek-Górecka A., Górecki M., Rzepecka-Stojko A., Balwierz R., Stojko J. (2020): Bee products in dermatology and skin care. Molecules, 25: 556. https://doi.org/10.3390/molecules25030556
 
Kus P.M., Szweda P., Jerkovic I., Tuberoso C.I.G. (2016): Activity of Polish unifloral honeys against pathogenic bacteria and its correlation with colour, phenolic content, antioxidant capacity and other parameters. Letters in Applied Microbiology, 62: 269–276. https://doi.org/10.1111/lam.12541
 
Kwakman P.H.S., te Velde A.A., de Boer L., Speijer D., Vandenbroucke-Grauls C.M.J.E., Zaat S.A.J. (2010): How honey kills bacteria. FASEB Journal, 24: 2576–2582. https://doi.org/10.1096/fj.09-150789
 
Kwakman P.H.S., Zaat S.A.J. (2012): Antibacterial components of honey. IUBMB Life, 64: 48–55. https://doi.org/10.1002/iub.578
 
Lashani E., Davoodabadi A., Soltan D., Mohammad M. (2020): Some probiotic properties of Lactobacillus species isolated from honey and their antimicrobial activity against foodborne pathogens. Veterinary Research Forum, 11: 121–126.
 
Lashani E., Davoodabadi A., Soltan Dallal M.M. (2018): Antimicrobial effects of Lactobacillus plantarum and Lactobacillus paracasei isolated from honey against Staphylococcus aureus. Journal of Babol University of Medical Sciences, 20: 44–49.
 
Liu J.R., Ye Y.L., Lin T.Y., Wang Y.W., Peng C.C. (2013): Effect of floral sources on the antioxidant, antimicrobial, and anti-inflammatory activities of honeys in Taiwan. Food Chemistry, 1: 938–943. https://doi.org/10.1016/j.foodchem.2013.02.015
 
Lu J., Turnbull L., Burke C.M., Liu M., Carter D.A., Schlothauer R.C., Whitchurch C.B., Harry E.J. (2014): Manuka-type honeys can eradicate biofilms produced by Staphylococcus aureus strains with different biofilm-forming abilities. PeerJ, 2: e326.
 
Lusby P.E., Coombes A., Wilkinson J.M. (2002): Honey: A potent agent for wound healing. Wound Ostomy Continence Nurses, 29: 295–300.
 
Lusby P.E., Coombes A.L., Wilkinson J.M. (2005): Bactericidal activity of different honeys against pathogenic bacteria. Archives of Medical Research, 36: 464–467. https://doi.org/10.1016/j.arcmed.2005.03.038
 
Lyudmila B., Juliana I., Galina G., Borislav V., Rossen N., Ivan M. (2015): Honey and green/black tea consumption may reduce the risk of Helicobacter pylori infection. Diagnostic Microbiology and Infectious Disease, 82: 85–86. https://doi.org/10.1016/j.diagmicrobio.2015.03.001
 
Maddocks S., Lopez M., Rowlands R., Cooper R. (2012): Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. Microbiology, 158: 781–790. https://doi.org/10.1099/mic.0.053959-0
 
Maddocks S.E., Jenkins R.E. (2013): Honey: A sweet solution to the growing problem of antimicrobial resistance? Future Microbiology, 8: 1419–1429. https://doi.org/10.2217/fmb.13.105
 
Madigan M., Martinko J., Bender K., Buckley D., Stahl D. (2015): Brock Biology of Microorganism. 14th Ed. Boston, US, Pearson: 1030.
 
Majtan J., Bohova J., Horniackova M., Klaudiny J., Majtan V. (2014): Anti-biofilm effects of honey against wound pathogens Proteus mirabilis and Enterobacter cloacae. Phytotherapy Research, 28: 69–75. https://doi.org/10.1002/ptr.4957
 
Mandal M.D., Mandal S. (2011): Honey: Its medicinal property and antibacterial activity. Asian Pacific Journal of Tropical Biomedecine, 1: 154–60. https://doi.org/10.1016/S2221-1691(11)60016-6
 
Mandrioli M., Bugli S., Saltini S., Genedani S., Ottaviani E. (2003): Molecular characterization of a defensin in the IZD-MB-0503 cell line derived from immunocytes of the insect Mamestra brassicae (Lepidoptera). Biology of the Cell, 95: 53–57. https://doi.org/10.1016/S0248-4900(02)01219-4
 
Maria L.E., Afonso S.E., Xesús F. (2011): Antifungal effect of lavender honey against Candida albicans, Candida krusei and Cryptococcus neoformans. Journal of Food Science and Technology, 48: 640–643. https://doi.org/10.1007/s13197-011-0243-1
 
Martinotti S., Ranzato E. (2018). Honey, wound repair and regenerative medicine. Journal of Functional Biomaterials, 9: 34. https://doi.org/10.3390/jfb9020034
 
Mathialagan M., Johnson Thangaraj Edward Y.S., David P.M.M., Senthilkumar M., Srinivasan M.R., Mohankumar S. (2018): Isolation, characterization and identification of probiotic lactic acid bacteria (LAB) from honey bees. International Journal of Current Microbiology and Applied Sciences, 7: 894–906. https://doi.org/10.20546/ijcmas.2018.704.096
 
Matzen R.D., Leth-Espensen J.Z., Jansson T., Nielsen D.S., Lund M.N., Matzen S.H. (2018): The antibacterial effect in vitro of honey derived from various Danish flora. Dermatology Research and Practice, 2018: 7021713. https://doi.org/10.1155/2018/7021713
 
Mavric E., Wittmann S., Barth G., Henle T. (2008): Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Molecular Nutrition and Food Research, 52: 483–489. https://doi.org/10.1002/mnfr.200700282
 
Mbogning E., Tchoumboue J., Damesse F., Sanou Sobze M., Canini A. (2011): Physico-chemical characteristics of honeys from the Sudano-Guinean zone of the West and Adamaoua Cameroon (Caractéristiques physico-chimiques des miels de la zone Soudano-guinéenne de l'Ouest et de l'Adamaoua Cameroun). Tropicultura, 29: 168–175. (in French)
 
Mc Loone P., Warnock M., Fyfe L. (2016): Honey: A realistic antimicrobial for disorders of the skin. Journal of Microbiology, Immunology and Infection, 49: 161–167. https://doi.org/10.1016/j.jmii.2015.01.009
 
Mohammed S.E.A., Kabbashi A.S., Koko W.S., Rana R.M., Adgaba N., Ghamdi A.A. (2017): In vitro activity of some natural honeys against Entamoeba histolytica and Giardia lamblia trophozoites. Saudi Journal of Biological Sciences, 26: 238–243. https://doi.org/10.1016/j.sjbs.2017.06.004
 
Molan P.C. (1992): The antibacterial activity of honey: 1. The nature of the antibacterial activity. Bee World, 73: 5–28. https://doi.org/10.1080/0005772X.1992.11099109
 
Montenegro G., Mejıas E. (2013): Biological applications of honeys produced by Apis mellifera. Biological Research, 46: 341–345. https://doi.org/10.4067/S0716-97602013000400005
 
Moody M.N., Landau J.M., Goldberg L.H., Marquez D., Vergilis-Kalner I.J. (2011): 595 nm long pulsed dye laser with a hydrocolloid dressing for the treatment of hypergranulation tissue on the scalp in postsurgical defects. Dermatology Online Journal, 17: 2. https://doi.org/10.5070/D38CN396S7
 
Moussa D., Noureddine H.S., Mohamed M., Abdelmelek, Saad A. (2012): Antibacterial activity of various honey types of Algeria against Staphylococcus aureus and Streptococcus pyogenes. Asian Pacific Journal of Tropical Medicine, 5: 773–776. https://doi.org/10.1016/S1995-7645(12)60141-2
 
Mulu A., Diro E., Tekleselassie H., Belyhun Y., Anagaw B., Alemayehu M., Gelaw A., Biadglegne F., Desalegn K., Yifiru S., Tiruneh M., Kassu A., Nishikawa T., Isogai E. (2010): Effect of Ethiopian multiflora honey on fluconazole-resistant Candida species isolated from the oral cavity of AIDS patients. International Journal of STD and AIDS, 21: 741–745. https://doi.org/10.1258/ijsa.2010.010140
 
Ng W.J., Lim M.S. (2015): Antistaphylococcal activity of melaleuca honey. Southeast Asian Journal of Tropical Medicine and Public Health, 46: 472–479.
 
Nolan V.C., Harrison J., Cox J.A.G. (2019): Dissecting the antimicrobial composition of honey. Antibiotics, 8: 251. https://doi.org/10.3390/antibiotics8040251
 
Obaseiki-Ebor E.E., Afonya T.C.A. (1984): In vitro evaluation of the anticandidiasis activity of honey distillate (HY-1) compared with that of some antimycotic agents. Journal of Pharmacy and Pharmacology, 36: 283–284. https://doi.org/10.1111/j.2042-7158.1984.tb04373.x
 
Olaitan P.B., Adeleke O.E., Ola I.O. (2007): Honey: A reservoir for microorganisms and an inhibitory agent for microbes. African Health Sciences, 7: 159–165.
 
Olofsson T.C., Butler È., Markowicz P., Lindholm C., Larsson L., Vásquez A. (2016): Lactic acid bacterial symbionts in honeybees – An unknown key to honey's antimicrobial and therapeutic activities. International Wound Journal, 13: 668–679. https://doi.org/10.1111/iwj.12345
 
Olofsson T.C., Vásquez A. (2008): Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Current Microbiology, 57: 356–563. https://doi.org/10.1007/s00284-008-9202-0
 
Oluwapelumi O.B., Morayo A., Buru A.S., Richard A.Y., Funmilayo A.J., Funmi A.A. (2017): Antimicrobial activities of different honeys sold in Ado-Ekiti on bacteria associated with upper respiratory tract infections. International Journal of Current Microbiology and Applied Sciences, 6: 1–10. https://doi.org/10.20546/ijcmas.2017.602.001
 
Osmojasola P.F. (2002): The antibacterial effect of honey on bacteria isolated from infected wound in Ilorin, Nigeria. Nigerian Society for Experimental Biology, 2: 109–112.
 
Peña R.M., Barciela J., Herrero C., García-Martín S. (2004): Solid-phase microextraction gas chromatography-mass spectrometry determination of monoterpenes in honeys. Journal of Separation Science, 27: 1540–1544. https://doi.org/10.1002/jssc.200301705
 
Piotr S. (2017): Antimicrobial activity of honey. In: Vagner de Alencar Arnaut de Toledo (ed.): Honey Analysis. London, United Kingdom, IntechOpen: 215–232.
 
Proaño A., Coello D., Villacrés-Granda I., Ballesteros I., Debut A., Vizuete K., Brenciani A., Álvarez-Suarez J.M. (2021): The osmotic action of sugar combined with hydrogen peroxide and bee-derived antibacterial peptide Defensin-1 is crucial for the antibiofilm activity of eucalyptus honey. Lebensmittel-Wissenschaft and Technologie, 136: 110379. https://doi.org/10.1016/j.lwt.2020.110379
 
PubChem (2022): Human Defensin NP1 (Compound). PubChem, National Institutes of Health (NIH). Available at https://pubchem.ncbi.nlm.nih.gov/compound/16130476#section=2D-Structure (accessed May, 2022).
 
Rabie E., Serem J.C., Oberholzer H.M., Gaspar A.R.M., Bester M.J. (2016): How methylgyloxal kills bacteria: An ultrastructural study. Ultrastructural Pathology, 40: 107–111. https://doi.org/10.3109/01913123.2016.1154914
 
Rafael V., Flavia Z., Gloria M., Ady G. (2021): Bioactive compounds in Apis mellifera monofloral honeys. Journal of Food Science, 86: 1552–1582. https://doi.org/10.1111/1750-3841.15706
 
Rani G.N., Budumuru R., Bandaru N.R. (2017): Antimicrobial activity of honey with special reference to methicillin resistant Staphylococcus aureus (MRSA) and methicillin sensitive Staphylococcus aureus (MSSA). Journal of Clinical and Diagnostic Research, 11: DC05–DC08. https://doi.org/10.7860/JCDR/2017/30085.10347
 
Samarghandian S., Farkhondeh T., Samini F. (2017): Honey and health: A review of recent clinical research. Pharmacognosy Research, 9: 121–127.
 
Sampath Kumar K.P., Bhowmik D., Chiranjib B., Chandira M.R. (2010): Medicinal uses and health benefits of honey: An overview. Journal of Chemical and Pharmaceutical Research, 2: 385–395.
 
Sanz M.L., Polemis N., Morales V., Corzo N., Drakoularakou A., Gibson G.R., Rastall R.A. (2005): In vitro investigation into the potential prebiotic activity of honey oligosaccharides. Journal of Agricultural and Food Chemistry, 53: 2914–2921. https://doi.org/10.1021/jf0500684
 
Šedík P., Pocol C.B., Horská E., Fiore M. (2019): Honey: Food or medicine? A comparative study between Slovakia and Romania. British Food Journal, 121: 1281–1297. https://doi.org/10.1108/BFJ-12-2018-0813
 
Semprini A., Singer J., Braithwaite I., Shortt N., Thayabaran D., Mc Connell M., Weatherall M., Beasley R. (2018): Kanuka honey versus aciclovir for the topical treatment of herpes simplex labialis: A randomised controlled trial. BMJ Open, 9: e026201.
 
Shenoy V.P., Ballal M., Shivananda P., Bairy I. (2012): Honey as an antimicrobial agent against Pseudomonas aeruginosa isolated from infected wounds. Journal of Global Infectious Diseases, 4: 102–105. https://doi.org/10.4103/0974-777X.96770
 
Sherlock O., Dolan A., Athman R., Power A., Gethin G., Cowman S., Humphreys H. (2010): Comparison of the antimicrobial activity of Ulmo honey from Chile and Manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. BMC Complementary and Alternative Medicine, 10: 47. https://doi.org/10.1186/1472-6882-10-47
 
Sojka M., Valachova I., Bucekova M., Majtan J. (2016): Antibiofilm efficacy of honey and bee-derived defensin-1 on multispecies wound biofilm. Journal of Medical Microbiology, 65: 337–344. https://doi.org/10.1099/jmm.0.000227
 
Soroy L., Bagus S., Yongkie I.P., Djoko W. (2014): The effect of a unique propolis compound (Propoelix™) on clinical outcomes in patients with dengue hemorrhagic fever. Infection and Drug Resistance, 7: 323–329.
 
Sowa P., Grabek-Lejko D., Wesołowska M., Swacha S., Zugan M.D. (2017): Hydrogen peroxide-dependent antibacterial action of Melilotus albus honey. Letters in Applied Microbiology, 65: 82–89. https://doi.org/10.1111/lam.12749
 
Temaru E., Shimura S., Amano K., Karasama T. (2007): Antimicrobial activity of honey from stingless honeybees (Hymenopetra Apidae; Meliponinae). Polish Journal of Microbiology, 56: 281–285.
 
Udwary D.W., Gontang E.A., Jones A.C., Jones C.S., Schultz A.W., Winter J.M., Yang J.Y., Beauchemin N., Capson T.L., Clark B.R., Esquenazi E., Eustáquio A.S., Freel K., Gerwick L., Gerwick W.H., Gonzalez D., Liu W.T., Malloy K.L., Maloney K.N., Nett M., Nunnery J.K., Penn K., Prieto-Davo A., Simmons T.L., Weitz S., Wilson M.C., Tisa L.S., Dorrestein P.C., Moore B.S. (2011): Significant natural product biosynthetic potential of actinorhizal symbionts of the genus Frankia, as revealed by comparative genomic and proteomic analyses. Applied and Environmental Microbiology, 77: 3617–3625. https://doi.org/10.1128/AEM.00038-11
 
Vásquez A., Forsgren E., Fries I., Paxton R.J., Flaberg E., Szekely L., Olofsson T.C. (2012): Symbionts as major modulators of insect health: Lactic acid bacteria and honeybees. PLoS One, 7: e33188. https://doi.org/10.1371/journal.pone.0033188
 
Voidarou C., Alexopoulos A., Plessas S., Karapanou A., Mantzourani I., Stavropoulou E., Fotou K., Tzora A., Skoufos I., Bezirtzoglou E. (2011): Antibacterial activity of different honeys against pathogenic bacteria. Anaerobe, 17: 375–379. https://doi.org/10.1016/j.anaerobe.2011.03.012
 
Waheed M., Hussain M.B., Javed A., Mushtaq Z., Hassan S., Shariati M.A., Khan M.U., Majeed M., Nigam M., Mishra A.P., Heydari M. (2018): Honey and cancer: A mechanistic review. Clinical Nutrition, 38: 2499–2503. https://doi.org/10.1016/j.clnu.2018.12.019
 
Watanabe K., Rahmasari R., Matsunaga A., Haruyama T., Kobayashi N. (2014): Anti-influenza viral effects of honey in vitro: Potent high activity of Manuka honey. Archives of Medical Research, 45: 359–365. https://doi.org/10.1016/j.arcmed.2014.05.006
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti