Extrusion rheometry of collagen dough

https://doi.org/10.17221/265/2020-CJFSCitation:

Štípek J., Skočilas J., Štancl J., Žitný R. (2021): Extrusion rheometry of collagen dough. Czech J. Food Sci., 39: 384–392.

download PDF

Although collagen is widely used (for example, in the food industry, in the pharmaceutical industry and in biomedicine), the rheological properties of the material are not well known for high concentrations (8% collagen, 90% water). Rheological properties were measured using a capillary-slit rheometer (an extrusion process), where the tested sample of collagen matter was pushed by a hydraulically driven piston through a narrow rectangular slit at very high shear rates of 50–6 000 s–1. The Herschel-Bulkley (HB) constitutive equation and a new correlation taking into account the finite gap width was used to evaluate the rheological properties (n = 0.2, K = 879 Pa sn, τ0 = 2 380 Pa). Use was made of a new yield stress measurement method evaluating τ0 'post mortem' after extrusion stops. The effects of wall slip and of air bubbles, which caused apparent compressibility of the 'silly putty' collagen material, were also studied. Corrections of the wall slip effect were implemented using sliding layer thickness δ.

References:
Barbut S., Ioi M., Marcone M. (2020): Co-extrusion of collagen casings. Effects of preparation, brining, and heating on strength, rheology and microstructure. Italian Journal of Food Science, 32: 91–106.
 
Barnes H.A., Hutton J.F., Walters K. (1989): An Introduction to Rheology. New York, USA, Elsevier Science Publishing Co.: 5–109.
 
Demeter M., Meltzer V., Călina I., Scărișoreanu A., Micutz M., Albu Kaya M.G. (2020): Highly elastic superabsorbent collagen/PVP/PAA/PEO hydrogels crosslinked via e-beam radiation. Radiation Physics and Chemistry, 174: 108898. https://doi.org/10.1016/j.radphyschem.2020.108898
 
Houška M., Landfeld A., Skočilas J., Žitný R., Novotná P., Štancl J., Dostál M., Chvátil D. (2016): The effect of irradiation on rheological and electrical properties of collagen. Applied Rhelogy, 26: 43775.
 
Kumar V.A., Caves J.M., Haller C.A., Dai E., Liu L., Grainger S., Chaikof E.L. (2013): Acellular vascular grafts generated from collagen and elastin analogs. Acta Biomaterialia, 9: 8067–8074. https://doi.org/10.1016/j.actbio.2013.05.024
 
Li G., Tian Z., Shen L., Liu W. (2020): Construction of collagen gel with high viscoelasticity and thermal stability via combining cross-linking and dehydration. Journal of Biomedical Materials Research, 108: 1934–1943. https://doi.org/10.1002/jbm.a.36956
 
Mackay M.E. (2018): The importance of rheological behavior in the additive manufacturing technique material extrusion. Journal of Rheology, 62: 1549–1561. https://doi.org/10.1122/1.5037687
 
Micutz M., Brazdaru L., Staicu T., Albu M., Sulea D., Leca M. (2015): Structural and rheological properties of collagen hydrogels containing tannic acid and chlorhexidine digluconate intended for topical applications. Comptes Rendus Chimie, 18: 160–169. https://doi.org/10.1016/j.crci.2014.07.007
 
Shibli J.A., Saska S., Pilatti L., Blay A. (2021): Bioresorbable polymers: Advanced materials and 4D printing for tissue engineering. Polymers, 13: 563. https://doi.org/10.3390/polym13040563
 
Skočilas J., Žitný R., Štancl J., Dostál M., Landfeld A., Houška M. (2016): Rheological properties of collagen matter predicted using an extrusion rheometer. Journal of Texture Studies, 47: 514–522. https://doi.org/10.1111/jtxs.12194
 
Sofou S., Muliawan E.B., Hatzikiriakos S.G., Mitsoulis E. (2008): Rheological characterization and constitutive modeling of bread dough. Rheologica Acta, 47: 369–381. https://doi.org/10.1007/s00397-007-0248-x
 
Steffe J.F. (1996). Rheological Methods in Food Process Engineering. 2nd Ed. East Lansing, Michigan, USA, Freeman Press: 121–343.
 
Tanner R.I. (2000). Engineering Rheology. 2nd Ed. New York, USA, Oxford University Press: 19–152.
 
Tanner R.I., Dai S., Wang Ch. (2006): On the compressibility of bread dough. Korea-Australia Rheology Journal, 18: 127–131.
 
Tanner R.I., Qi F., Dai S. (2008): Bread dough rheology and recoil. Journal of Non-Newtonian Fluid Mechanics, 148: 33–40. https://doi.org/10.1016/j.jnnfm.2007.04.006
 
Weiss J., Oechsle A.M, Häupler M., Gibis M., Kohlus R. (2015): Modulation of the rheological properties and microstructure of collagen by addition of co-gelling proteins. Food Hydrocolloids, 49: 118–126. https://doi.org/10.1016/j.foodhyd.2015.03.013
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti