Heat-resistant moulds: Assessment, prevention and their consequences for food safety and public health

https://doi.org/10.17221/26/2022-CJFSCitation:

Ulusoy B.H., Hamed N.S., Yıldırım F.K. (2022): Heat-resistant moulds: Assessment, prevention and their consequences for food safety and public health. Czech J. Food Sci., 40: 273–280.

download PDF

Heat-resistant moulds (HRMs) are the spoilage factors of thermally processed products such as pasteurised items and fruit products, which may cause financial losses and decrease food quality. Various variables may play a role in food contamination by HRMs, such as the processing environment, packaging, staff practices and air in the production site. Prevention of spoilage by HRMs for processed food products can be done through the reduction and decontamination of these microorganisms. This review aims to provide a perception of HRM and mycotoxin contamination, assessment, prevention and their consequences for food and human health.

References:
Alsharif A.M.A., Choo Y.M., Tan G.H. (2019): Detection of five mycotoxins in different food matrices in the Malaysian market by using validated liquid chromatography electrospray ionization triple quadrupole mass spectrometry. Toxins, 11: 196. https://doi.org/10.3390/toxins11040196
 
Awad W.A., Ghareeb K., Böhm J., Zentek J. (2010): Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation. Food Additives and Contaminants, 27: 510–520. https://doi.org/10.1080/19440040903571747
 
Aydin A., Ulusoy B.H., Ergun Ö. (2005): A survey on heat-resistant moulds in heat treated milk, milk products and fruit juices. Archiv fur Lebensmittelhygiene, 56: 58–60.
 
Beuchat L.R., Pitt J.I. (2001): Detection and enumeration of heat-resistant moulds. Compendium of Methods for the Microbiological Examination of Foods, 3: 251–263.
 
Biango-Daniels M.N., Snyder A.B., Worobo R.W., Hodge K.T. (2019): Fruit infected with Paecilomyces niveus: A source of spoilage inoculum and patulin in apple juice concentrate? Food Control, 97: 81–86. https://doi.org/10.1016/j.foodcont.2018.10.020
 
Calado T., Venâncio A., Abrunhosa L. (2014): Irradiation for mold and mycotoxin control: A review. Comprehensive Reviews in Food Science and Food Safety, 13: 1049–1061. https://doi.org/10.1111/1541-4337.12095
 
Dagnas S., Membré J.M. (2013): Predicting and preventing mold spoilage of food products. Journal of Food Protection, 76: 538–551. https://doi.org/10.4315/0362-028X.JFP-12-349
 
Dao T., Dantigny P. (2011): Control of food spoilage fungi by ethanol. Food Control, 22: 360–368. https://doi.org/10.1016/j.foodcont.2010.09.019
 
Delgado D.A., de Souza Sant'Ana A., de Massaguer P.R. (2012): Occurrence of moulds on laminated paperboard for aseptic packaging, selection of the most hydrogen peroxide- and heat-resistant isolates and determination of their thermal death kinetics in sterile distilled water. World Journal of Microbiology and Biotechnology, 28: 2609–2614. https://doi.org/10.1007/s11274-012-1064-8
 
dos Santos J.L.P., Samapundo S., Biyikli A., Van Impe J., Akkermans S., Höfte M., Devlieghere F. (2018): Occurrence, distribution and contamination levels of heat-resistant moulds throughout the processing of pasteurized high-acid fruit products. International Journal of Food Microbiology, 281: 72–81. https://doi.org/10.1016/j.ijfoodmicro.2018.05.019
 
Enigl D.C., King Jr A.D., Török T. (1993): Talaromyces trachyspermus, a heat-resistant mold isolated from fruit juice. Journal of Food Protection, 56: 1039–1042. https://doi.org/10.4315/0362-028X-56.12.1039
 
Fink-Gremmels J. (2008): The impact of mycotoxins in animal feeds. In: Leslie J.F. (ed.): Mycotoxins: Detection Methods, Management, Public Health and Agricultural Trade. Wallingford, United Kingdom, CABI: 155–167.
 
Gougouli M., Koutsoumanis K.P. (2017): Risk assessment of fungal spoilage: A case study of Aspergillus niger on yogurt. Food Microbiology, 65: 264–273. https://doi.org/10.1016/j.fm.2017.03.009
 
Groot M.N., Abee T., van Bokhorst-van de Veen H. (2019): Inactivation of conidia from three Penicillium spp. isolated from fruit juices by conventional and alternative mild preservation technologies and disinfection treatments. Food Microbiology, 81: 108–114. https://doi.org/10.1016/j.fm.2018.06.004
 
Gumus T., Demirci A.S., Sagdic O., Arici M. (2010): Inhibition of heat resistant moulds: Aspergillus fumigatus and Paecilomyces variotii by some plant essential oils. Food Science and Biotechnology, 19: 1241–1244. https://doi.org/10.1007/s10068-010-0177-9
 
Halasz A., Lasztity R., Abonyi T., Bata A. (2009): Decontamination of mycotoxin-containing food and feed by biodegradation. Food Reviews International, 25: 284–298. https://doi.org/10.1080/87559120903155750
 
Hussein H.S., Brasel J.M. (2001): Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology, 167: 101–134. https://doi.org/10.1016/S0300-483X(01)00471-1
 
Ishara A.W.S., Gunasena G.D.D.K. (2021): Heat resistant moulds in pasteurized fruit syrups. European Journal of Agriculture and Food Sciences, 3: 104–111. https://doi.org/10.24018/ejfood.2021.3.1.199
 
Kandhai M.C., Booij C.J.H., Van der Fels-Klerx H.J. (2011): Expert study to select indicators of the occurrence of emerging mycotoxin hazards. Risk Analysis: An International Journal, 31: 160–170. https://doi.org/10.1111/j.1539-6924.2010.01486.x
 
Kleter G.A., Prandini A., Filippi L., Marvin H.J.P. (2009): Identification of potentially emerging food safety issues by analysis of reports published by the European Community's Rapid Alert System for Food and Feed (RASFF) during a four-year period. Food and Chemical Toxicology, 47: 932–950. https://doi.org/10.1016/j.fct.2007.12.022
 
Kumar P., Mahato D.K., Kamle M., Mohanta T.K., Kang S.G. (2017): Aflatoxins: A global concern for food safety, human health and their management. Frontiers in Microbiology, 7: 2170. https://doi.org/10.3389/fmicb.2016.02170
 
Lopes L.F., Meca G., Bocate K.C., Nazareth T.M., Bordin K., Luciano F.B. (2018): Development of food packaging system containing allyl isothiocyanate against Penicillium nordicum in chilled pizza: Preliminary study. Journal of Food Processing and Preservation, 42: e13436. https://doi.org/10.1111/jfpp.13436
 
Luque M.I., Rodríguez A., Andrade M.J., Gordillo R., Rodríguez M., Córdoba J.J. (2011): Development of a PCR protocol to detect patulin producing moulds in food products. Food Control, 22: 1831–1838. https://doi.org/10.1016/j.foodcont.2011.04.020
 
Nevarez L., Vasseur V., Debaets S., Barbier G. (2010): Use of response surface methodology to optimise environmental stress conditions on Penicillium glabrum, a food spoilage mould. Fungal Biology, 114: 490–497. https://doi.org/10.1016/j.funbio.2010.03.011
 
Panek J., Frąc M., Bilińska-Wielgus N. (2016): Comparison of chemical sensitivity of fresh and long-stored heat resistant Neosartorya fischeri environmental isolates using BIOLOG Phenotype MicroArray system. PLoS One, 11: e0147605. https://doi.org/10.1371/journal.pone.0147605
 
Peraica M., Radić B., Lucić A., Pavlović M. (1999): Toxic effects of mycotoxins in humans. Bulletin of the World Health Organization, 77: 754.
 
Piñeiro M. (2008): FAO program on mycotoxin management. In: Leslie J.F. (ed.): Mycotoxins: Detection Methods, Management, Public Health and Agricultural Trade. Wallingford, United Kingdom, CABI: 387–401.
 
Puel O., Galtier P., Oswald I.P. (2010): Biosynthesis and toxicological effects of patulin. Toxins, 2: 613–631. https://doi.org/10.3390/toxins2040613
 
Rico-Munoz E., Houbraken J., Samson R.A. (2015): Detection and enumeration of heat-resistant molds. In: Salfinger Y., Tortorello M.L. (eds.): Compendium of Methods for the Microbiological Examination of Foods. Washington, D.C., US, American Public Health Association: 251–263.
 
Rico-Munoz E. (2017): Heat resistant moulds in foods and beverages: Recent advances on assessment and prevention. Current Opinion in Food Science, 17: 75–83. https://doi.org/10.1016/j.cofs.2017.10.011
 
Samapundo S., Vroman A., Eeckhout M., Devlieghere F. (2018): Effect of heat treatment intensity on the survival, activation and subsequent outgrowth of Byssochlamys nivea ascospores. LWT – Food Science and Technology, 93: 599–605. https://doi.org/10.1016/j.lwt.2018.03.076
 
Scaramuzza N., Cigarini M., Mutti P., Berni E. (2020): Sanitization of packaging and machineries in the food industry: Effect of hydrogen peroxide on ascospores and conidia of filamentous fungi. International Journal of Food Microbiology, 316: 108421. https://doi.org/10.1016/j.ijfoodmicro.2019.108421
 
Silva F.V. (2017): Resistance of Byssochlamys nivea and Neosartorya fischeri mould spores of different age to high pressure thermal processing and thermosonication. Journal of Food Engineering, 201: 9–16. https://doi.org/10.1016/j.jfoodeng.2017.01.007
 
Snyder A.B., Worobo R.W. (2018): Fungal spoilage in food processing. Journal of Food Protection, 81: 1035–1040. https://doi.org/10.4315/0362-028X.JFP-18-031
 
Strosnider H., Azziz-Baumgartner E., Banziger M., Bhat R.V., Breiman R., Brune M.N., Wilson D. (2006): Workgroup report: Public health strategies for reducing aflatoxin exposure in developing countries. Environmental Health Perspectives, 114: 1898–1903. https://doi.org/10.1289/ehp.9302
 
Tacker M., Kellauer E., Kranner L., Mittendorfer J. (1999): Medical technology shows the way. Electron beam treatment for disinfecting food packaging (Medizintechnik zeigt den Weg. Elektronenstrahlbehandlung zur Entkeimung von Lebensmittelverpackungen). Zeitschrift für Lebensmittelwirtschaft (ZFL), 50: 24–26. (in German)
 
Tranquillini R., Scaramuzza N., Berni E. (2017): Occurrence and ecological distribution of heat resistant moulds spores (HRMS) in raw materials used by food industry and thermal characterization of two Talaromyces isolates. International Journal of Food Microbiology, 242: 116–123. https://doi.org/10.1016/j.ijfoodmicro.2016.11.023
 
Tucker G.S. (2008): Food Biodeterioration and Preservation. Singapore, John Wiley & Sons: 264.
 
USFDA (2004): Food/Guidance & Regulation/Guidance Documents & Regulatory Information/Juice 2004. The United States Food and Drug Administration (USFDA). Available at https://www.fda.gov/food/guidance-regulation-food-and-dietary-supplements/guidance-documents-regulatory-information-topic-food-and-dietary-supplements (accessed Feb 8, 2022).
 
Wafa E.W., Yahya R.S., Sobh M.A., Eraky I., El-Baz M., El-Gayar H.A., Creppy E.E. (1998): Human ochratoxicosis and nephropathy in Egypt: A preliminary study. Human & Experimental Toxicology, 17: 124–129.
 
Wild C.P., Turner P.C. (2002): The toxicology of aflatoxins as a basis for public health decisions. Mutagenesis, 17: 471–481. https://doi.org/10.1093/mutage/17.6.471
 
Yamashita S., Nakagawa H., Sakaguchi T., Arima T.H., Kikoku Y. (2019): Detection of Talaromyces macrosporus and Talaromyces trachyspermus by a PCR assay targeting the hydrophobin gene. Letters in Applied Microbiology, 68: 415–422. https://doi.org/10.1111/lam.13116
 
Zwietering M.H. (2015): Risk assessment and risk management for safe foods: Assessment needs inclusion of variability and uncertainty, management needs discrete decisions. International Journal of Food Microbiology, 213: 118–123. https://doi.org/10.1016/j.ijfoodmicro.2015.03.032
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti