Enzyme-linked immunosorbent assay for simultaneous detection of two fungicides kresoxim-methyl and trifloxystrobin in oranges

https://doi.org/10.17221/275/2015-CJFSCitation:Yang W., Zhu J., Liu M., Dai X. (2016): Enzyme-linked immunosorbent assay for simultaneous detection of two fungicides kresoxim-methyl and trifloxystrobin in oranges. Czech J. Food Sci., 34: 429-438.
download PDF
To assemble an indirect competitive enzyme-linked immunosorbent assay (ELISA) for estimating two strobilurin fungicides at the same time, the hapten was synthesised which contained the common active group, (E)-2-(2-bromo-phenyl)-2-(methoxyimino) acetic acid methyl ester (OEBr) in kresoxim-methyl and trifloxystrobin. The immunogen and coating antigen were respectively prepared through conjugating the above-mentioned hapten with BSA and OVA by the mixed anhydride and activated ester methods, and polyclonal antibodies were produced by immunised rabbits. An enzyme-linked immunosorbent assay was developed for simultaneous detection of kresoxim-methyl and trifloxystrobin. In ELISA, the antiserum showed high affinity and sensitivity to kresoxim-methyl and trifloxystrobin, and their IC50 value and detection limit (expressed as IC10) were 14.7 and 0.0044 µg/ml, respectively, for kresoxim-methyl, and 22.9 and 0.014 µg/ml, respectively for trifloxystrobin. The cross-reaction rate was below 0.1% for other strobilurin fungicides. Recovery study of ELISA from spiked samples of homogenised peeled oranges (final concentrations of 100, 10, and 1 µg/ml) resulted in recovery levels in the range of 82–104%.
References:
Sannino Anna, Bolzoni Luciana, Bandini Mirella (2004): Application of liquid chromatography with electrospray tandem mass spectrometry to the determination of a new generation of pesticides in processed fruits and vegetables. Journal of Chromatography A, 1036, 161-169  https://doi.org/10.1016/j.chroma.2004.02.078
 
Bai J.S., Bu F.R. (2001): Polyethylene glycol coupling product of human hemoglobin synthesis and characterization. Chinese Journal of Blood Transfusion, 14: 150–152.
 
Bartlett Dave W, Clough John M, Godwin Jeremy R, Hall Alison A, Hamer Mick, Parr-Dobrzanski Bob (2002): The strobilurin fungicides. Pest Management Science, 58, 649-662  https://doi.org/10.1002/ps.520
 
Bempelou Eleftheria D., Liapis Konstantinos S. (2006): Validation of a multi-residue method for the determination of pesticide residues in apples by gas chromatography. International Journal of Environmental Analytical Chemistry, 86, 63-68  https://doi.org/10.1080/03067310500248320
 
Campillo Natalia, Viñas Pilar, Aguinaga Nerea, Férez Gema, Hernández-Córdoba Manuel (2010): Stir bar sorptive extraction coupled to liquid chromatography for the analysis of strobilurin fungicides in fruit samples. Journal of Chromatography A, 1217, 4529-4534  https://doi.org/10.1016/j.chroma.2010.05.006
 
Chen C.T., Cheng M.J., Li O.Y. (2011): Analysis of kresoxim-methyl·hexaconazole in 40 % SC by HPLC. Pesticide Science and Administration, 32: 42–45.
 
Clough J. M. (1993): The strobilurins, oudemansins, and myxothiazols, fungicidal derivatives of ?-methoxyacrylic acid. Natural Product Reports, 10, 565-  https://doi.org/10.1039/np9931000565
 
Cunha Sara C., Lehotay Steven J., Mastovska Katerina, Fernandes José O., Beatriz Maria, Oliveira P. P. (2007): Evaluation of the QuEChERS sample preparation approach for the analysis of pesticide residues in olives. Journal of Separation Science, 30, 620-632  https://doi.org/10.1002/jssc.200600410
 
Guan- A.Y., Hu N.D. (2002): The strobilurin fungicides. World Pesticides, 24: 16–19.
 
Lahlali R., Serrhini M.N., Friel D., Jijakli M.H. (2006): In vitro effects of water activity, temperature and solutes on the growth rate of P. italicum Wehmer and P. digitatum Sacc.. Journal of Applied Microbiology, 101, 628-636  https://doi.org/10.1111/j.1365-2672.2006.02953.x
 
Lequin R. M. (2005): Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA). Clinical Chemistry, 51, 2415-2418  https://doi.org/10.1373/clinchem.2005.051532
 
Mercader Josep V., Suárez-Pantaleón Celia, Agulló Consuelo, Abad-Somovilla Antonio, Abad-Fuentes Antonio (2008): Hapten Synthesis and Monoclonal Antibody-Based Immunoassay Development for Detection of the Fungicide Trifloxystrobin. Journal of Agricultural and Food Chemistry, 56, 2581-2588  https://doi.org/10.1021/jf800157s
 
Mercader J.V., Rosario L.M., Esteve-Turrillas F.A., Consuelo A., Antonio A.S., Antonio A.F. (2014a): Sensitive monoclonal antibody-based immunoassays for kresoxim-methyl analysis in QuEChERS-based food extracts. Journal of Agricultural and Food Chemistry, 62: 2816–2821.
 
Mercader J.V., López-Moreno R., Esteve-Turrillas F.A., Abad-Somovilla A., Abad-Fuentes A. (2014b): Immunoassays for trifloxystrobin analysis. Part II. Assay development and application to residue determination in food. Food Chemistry, 162: 41–46.
 
Plaza P., Usall J., Teixido N., Vinas I. (2003): Effect of water activity and temperature on germination and growth of Penicillium digitatum, P. italicum and Geotrichum candidum. Journal of Applied Microbiology, 94, 549-554  https://doi.org/10.1046/j.1365-2672.2003.01909.x
 
Sauter Hubert, Steglich Wolfgang, Anke Timm (1999): Strobilurins: Evolution of a New Class of Active Substances. Angewandte Chemie International Edition, 38, 1328-1349  https://doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1328::AID-ANIE1328>3.0.CO;2-1
 
Shimomura Mifumi, Nomura Yoko, Zhang Wei, Sakino Masato, Lee Kyong-Hoon, Ikebukuro Kazunori, Karube Isao (2001): Simple and rapid detection method using surface plasmon resonance for dioxins, polychlorinated biphenylx and atrazine. Analytica Chimica Acta, 434, 223-230  https://doi.org/10.1016/S0003-2670(01)00809-1
 
Sinkule Joseph A., Rosen Steven T., Radosevich James A. (1991): Monoclonal Antibody 44&ndash;3A6 Doxorubicin Immunoconjugates: Comparative in vitro Anti-Tumor Efficacy of Different Conjugation Methods. Tumor Biology, 12, 198-206  https://doi.org/10.1159/000217705
 
Urusov A. E., Zherdev A. V., Dzantiev B. B. (2010): Immunochemical methods of mycotoxin analysis (review). Applied Biochemistry and Microbiology, 46, 253-266  https://doi.org/10.1134/S0003683810030038
 
Wan H.J., Ye S.F., Tan B. (2011): Analysis of trifloxystrobin by HPLC. Agrochemicals, 2011: 820–821.
 
Wang Y.F., Ge B.K., Gao J.H., Chang C.Y., Chen Q.Y. (2009): Determination of 8 strobilurins in fruits and vegetables by liquid chromatography-mass spectrometer. Food Research and Development, 30: 130–133.
 
Xiao Z.L., Sun Y.M., Zhang M.M. (2006): Synthesis of Methamidophos derivative and preparation of artificial antigens. Food Science, 27: 377–380.
 
Yi G., Shuai M. (2007): Effect of incubative time for the accuracy of ELISA. Journal of Laboratory and Clinical Medicine, 4: 353–355.
 
Zhang G. (2003): Strobilurin fungicides applications, development status and prospects. Pesticide Science and Administration, 24: 30–34.
 
Zhang J., Wang C.N.B., Wei C.J. (2009): Development of ELISA kit for deltamethrin residue. Journal of Beijing University of Agriculture, 24: 27–30.
 
Zhang H., Ye B.B., Wang X.Y., Chen C., Wu L. (2008): Determination of kresoxim-methyl and trifioxystrobin residues in tomato and cucumber by gas chromatography. Chemistry, 6: 465–468.
 
Zhang H., Wen W., Song G.P. (2011): Preparation of folic acid artificial antigen and identification of antiserum. Chinese Agricultural Science Bulletin, 27: 78–81.
 
Zhao L., Ma L.Y. (2010): The biological properties of strobilurin fungicides. Modern Pesticides, 5: 9–12.
 
download PDF

© 2020 Czech Academy of Agricultural Sciences