Isoflavones of the red and Hungarian clover and possible impact on animal diet

Petrović M., Sokolović D., Babić S., Vymyslický T., Marković J., Zornić V., Dajić-Stevanović Z. (2021): Isoflavones of the red and Hungarian clover and possible impact on animal diet. Czech J. Food Sci., 39: 169–175.

download PDF

The content of daidzein, genistein, formononetin, and biochanin A isoflavones was studied in natural populations of red and Hungarian clover, to estimate their impact on fodder quality and to determine directions in possible breeding programs. The study included 6 red clover (Trifolium pratense) and 6 Hungarian clover (Trifolium pannonicum) populations, collected in the central Balkans. The differences between the species and among the populations were analysed. The average content of total isoflavones was 1.393 mg g–1 and 0.487 mg g–1 of air dry matter in Hungarian clover, respectively. While the most prevailed isoflavone in red clover was biochanin A (46%), the Hungarian clover populations were rich in genistein (43%). The red clover leaves accumulated the highest content of isoflavones. The Hungarian clover flowers and leaves had an equal amount of isoflavones. The obtained values of the total isoflavones could not affect the overall nutrient quality and therefore, researched natural populations of two clover species could be considered for further breeding programs.

Balcells J., Aris A., Serrano A., Seradj A.R., Crespo J., Devant M. (2012): Effects of an extract of plant flavonoids (Bioflavex) on rumen fermentation and performance in heifers fed high-concentrate diets. Journal of Animal Science, 90: 4975–4984.
Bursać M., Atanacković M., Cvejić J., Vasiljević S. (2011): Analysis of phytoestrogens in red clover (Analiza fitoestrogena crvene dateline). Medicina Danas, 10: 259–265. (in Serbian)
Butkutė B., Lemežienė N., Dabkevičienė G., Jakštas V., Vilčinskas E., Janulis V. (2014): Source of variation of isoflavone concentrations in perennial clover species. Pharmacognosy Magazine, 10: S181–S188.
Cvejić J., Tepavčević V., Bursać M., Miladinović J., Malenčić Đ. (2011): Isoflavone composition in F1 soybean progenies. Food Research International, 44: 2698–2702.
Dabkevičienė G., Butkutė B., Jakštaš V., Janulis V. (2012): Distribution of formononetin, daidzein and genistein in Trifolium species and their aerial plant parts. Chemija, 23: 306–311.
Francis C.M., Millington A.J., Bailey E.T. (1967): The distribution of oestrogenic isoflavones in the genus Trifolium. Australian Journal of Agricultural Research, 18: 47–54.
Jiang Z.Y., Jiang S.Q., Lin Y.C., Xi P.B., Yu D.Q., Wu T.X. (2007): Effects of soybean isoflavone on growth performance, meat quality, and antioxidation in male broilers. Poultry Science, 86: 1356–1362.
Klejdus B., Vitamvasova D., Kuban V. (1999): Reversed-phase high-performance liquid chromatographic determination of isoflavones in plant materials after isolation by solid-phase extraction. Journal of Chromatography A, 839: 261–263.
Krenn L., Unterrieder I., Ruprechter R. (2002): Quantification of isoflavones in red clover by high-performance liquid chromatography. Journal of Chromatography B, 777: 123–128.
Kroyer G.T. (2004): Red clover extract as antioxidant active and functional food ingredient. Innovative Food Science & Emerging Technologies, 5: 101–105.
Lemežienė N., Padarauskas A., Butkutė B., Cesevičienė J., Taujenis L., Norkevičienė E., Mikaliūnienė J. (2015): The concentration of isoflavones in red clover (Trifolium pratense L.) at flowering stage. Zemdirbyste-Agriculture, 102: 443–448.
Mueller-Harvey I. (2013): Breeding for 'Healthy Hay': Can we optimise plant polyphenols in legumes for ruminant nutrition, animal health and environmental sustainability? In: Sokolović D., Huyghe C., Radović J. (eds.): Quantitative Traits Breeding for Multifunctional Grasslands and Turf. Vrnjačka Banja, Serbia, Springer International Publishing: 299–313.
Morito K., Hirose T., Kinjo J. (2001): Interaction of phytoestrogens with estrogen receptors α and β. Biological & Pharmaceutical Bulletin, 24: 351–356.
Oleszek W., Stochmal A., Janda B. (2007): Concentration of isoflavones and other phenolics in the aerial parts of Trifolium species. Journal of Agricultural and Food Chemistry, 55: 8095–8100.
Pelikán J., Knotová D., Hofbauer J. (2016): Jetel panonský (Trifolium pannonicum L.). Pícninářské listy, Spolek pěstitelů travních a jetelových semen (SPTJS), XXII: 7. (in Czech)
Polak M., Jancova M. (2005): The effects of feeding grass and grass/clover silages on dairy cows' metabolism. In: Lillak R., Viiralt R., Lenke A., Geerman V. (eds.): Proceedings of the 13th Symposium of European Grassland Federation, Tartu, Estonia, Aug 29–31, 2005: 643–647.
Radinović I., Vasiljević S., Zorić M., Branković G., Živanović T., Prodanović S. (2018): Variability of red clover genotypes on the basis of morphological markers. Genetika, 50: 895–906.
Reynaud J., Guilet D., Terreux R., Lussignol M., Walchshofer N. (2005): Isoflavonoids in non-leguminous families: An update. Natural Product Reports, 22: 504–515.
Řepková J., Nedělník J. (2014): Modern methods for genetic improvement of Trifolium pratense. Czech Journal of Genetics and Plant Breeding, 50: 92–99.
Sazdanić D., Mikulić P.M., Kladar N., Hogervorst J., Atanacković-Krstonošić M. (2018): Analysis of the factors influencing red clover (Trifolium pratense L., Fabaceae) isoflavone content. Biologia Serbica, 40: 34–41.
Sivesind E., Seguin P. (2005): Effects of the environment, cultivar, maturity, and preservation method on red clover isoflavone concentration. Journal of Agricultural and Food Chemistry, 53: 6397–6402.
Szabo T. (1987): Microevolution in Trifolium L. Sect. Stenostoma M. B. I. biometry of spontaneous and cultivated Trifolium pannonicum Jacq. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 17: 47–75.
Yu J., Bi X., Yu B., Chen D. (2016): Isoflavones: anti-inflammatory benefit and possible caveats. Nutrients, 8: 361.
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti