Evaluation of physicochemical, microbiological and sensory properties of croissants fortified with Arthrospira platensis (Spirulina)

https://doi.org/10.17221/289/2015-CJFSCitation:Massoud R., Khosravi-Darani K., Nakhsaz F., Varga L. (2016): Evaluation of physicochemical, microbiological and sensory properties of croissants fortified with Arthrospira platensis (Spirulina). Czech J. Food Sci., 34: 350-355.
download PDF
The major physical, chemical, microbiological, and sensory properties of croissants enriched with Spirulina at concentrations ranging between 0.5 and 1.5% were evaluated. The results showed that the use of A. platensis biomass for the production of croissants improved the textural and organoleptic properties of the final products. Spirulina fortification also increased the protein and moisture levels and water-holding capacity, whereas it decreased the crumb firmness and lightness of croissants. Optimum sensory results were obtained when Spirulina was applied at a rate of 1%. Besides these benefits, the A. platensis biomass enhanced the levels of biologically active substances (i.e. essential amino acids, chlorophyll, phycocyanin, carotenoids, minerals, vitamins, and essential fatty acids) in croissant samples. To our knowledge, this is the first scientific study on Spirulina-fortified croissants.
References:
AACCI (1999): Crude protein – Kjeldahl method, boric acid modification. AACCI Method 46-12.01. St. Paul, American Association of Cereal Chemists International.
 
Attia El-Said A., Shehata Hassan A., Askar Ahmed (1993): An alternative formula for the sweetening of reduced-calorie cakes. Food Chemistry, 48, 169-172  https://doi.org/10.1016/0308-8146(93)90052-H
 
Batista A.P., Nunes M.C., Raymundo A., Gouveia L., Sousa I., Cordobés F., Guerrero A., Franco J.M. (2011): Microalgae biomass interaction in biopolymer gelled systems. Food Hydrocolloids, 25, 817-825  https://doi.org/10.1016/j.foodhyd.2010.09.018
 
Bhowmik D., Dubey J., Mehra S. (2009): Probiotic efficiency of Spirulina platensis: stimulating growth of lactic acid bacteria. World Journal of Dairy and Food Sciences, 4: 160–163.
 
Constantinescu G., Dinu M., Buculei A., Stoica A. (2014): Spirulina platensis effect as protein supplement on rheological properties of dough and nutritional qualities of hot-dog rolls. Journal of Agroalimentary Processes and Technologies, 20: 171–177.
 
Danesi E.D.G, Navacchi M.F.P, Takeuchi K.P., Frata M.T., Carvalho J.C.M. (2010): Application of Spirulina platensis in protein enrichment of manioc based bakery products. Journal of Biotechnology, 150: S311–S318.
 
Danesi Eliane Dalva Godoy, Rangel-Yagui Carlota Oliveira, Sato Sunao, Carvalho João Carlos Monteiro de (2011): Growth and content of Spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources. Brazilian Journal of Microbiology, 42, 362-373  https://doi.org/10.1590/S1517-83822011000100046
 
Rodríguez De Marco Estefanía, Steffolani M. Eugenia, Martínez Cristina S., León Alberto E. (2014): Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT - Food Science and Technology, 58, 102-108  https://doi.org/10.1016/j.lwt.2014.02.054
 
Fradique Mónica, Batista Ana Paula, Nunes M Cristiana, Gouveia Luísa, Bandarra Narcisa M, Raymundo Anabela (2010): Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture, 90, 1656-1664  https://doi.org/10.1002/jsfa.3999
 
Gouveia Luísa, Batista Ana Paula, Miranda Ana, Empis José, Raymundo Anabela (2007): Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innovative Food Science & Emerging Technologies, 8, 433-436  https://doi.org/10.1016/j.ifset.2007.03.026
 
Guarda A, Rosell C.M, Benedito C, Galotto M.J (2004): Different hydrocolloids as bread improvers and antistaling agents. Food Hydrocolloids, 18, 241-247  https://doi.org/10.1016/S0268-005X(03)00080-8
 
Guldas M., Irkin R. (2010): Influence of Spirulina platensis powder on the microflora of yoghurt and acidophilus milk. Mljekarstvo, 60: 237–243.
 
Hoseini S.M., Khosravi-Darani K., Mozafari M.R. (2013): Nutritional and Medical Applications of Spirulina Microalgae. Mini-Reviews in Medicinal Chemistry, 13, 1231-1237  https://doi.org/10.2174/1389557511313080009
 
Iyer U.M., Dhruv S.A., Mani I.U. (2008): Spirulina and its therapeutic implications as a food product. In: Gershwin M.E., Belay A. (eds): Spirulina in Human Nutrition and Health. Boca Raton, CRC Press: 51–70.
 
Khan Z., Bhadouria P., Bisen P. (2005): Nutritional and Therapeutic Potential of Spirulina. Current Pharmaceutical Biotechnology, 6, 373-379  https://doi.org/10.2174/138920105774370607
 
Mala R., Sarojini M., Saravanababu S., Umadevi G. (2009): Screening for antimicrobial activity of crude extracts of Spirulina platensis. Journal of Cell and Tissue Research, 9: 1951–1955.
 
McCarty Mark F. (2007): Clinical Potential of Spirulina as a Source of Phycocyanobilin. Journal of Medicinal Food, 10, 566-570  https://doi.org/10.1089/jmf.2007.621
 
Mendiola J.A., Jaime L., Santoyo S., Reglero G., Cifuentes A., Ibañez E., Señoráns F.J. (2007): Screening of functional compounds in supercritical fluid extracts from Spirulina platensis. Food Chemistry, 102, 1357-1367  https://doi.org/10.1016/j.foodchem.2006.06.068
 
Minh N.P. (2014): Effect of Saccharomyces cerevisiae, Spirulina and preservative supplementation to sweet bread quality in bakery. International Journal of Multidisciplinary Research and Development, 1: 36–44.
 
Navacchi Meire Franci Polonio, Carvalho João Carlos Monteiro de, Takeuchi Katiuchia Pereira, Danesi Eliane Dalva Godoy (2012): Development of cassava cake enriched with its own bran and Spirulina platensis. Acta Scientiarum. Technology, 34, -  https://doi.org/10.4025/actascitechnol.v34i4.10687
 
Ördög V., Stirk W. A., Lenobel R., Bancířová M., Strnad M., van Staden J., Szigeti J., Németh L. (2004): Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. Journal of Applied Phycology, 16, 309-314  https://doi.org/10.1023/B:JAPH.0000047789.34883.aa
 
Rabelo Samantha Ferreira, Lemes Ailton Cesar, Takeuchi Katiuchia Pereira, Frata Marcela Tostes, Carvalho João Carlos Monteiro de, Danesi Eliane Dalva Godoy (2013): Development of cassava doughnuts enriched with Spirulina platensis biomass. Brazilian Journal of Food Technology, 16, 42-51  https://doi.org/10.1590/S1981-67232013005000001
 
Raposo Maria, de Morais Rui, Bernardo de Morais Alcina (2013): Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae. Marine Drugs, 11, 233-252  https://doi.org/10.3390/md11010233
 
Ravelonandro Pierre H., Ratianarivo Dominique H., Joannis-Cassan Claire, Isambert Arsène, Raherimandimby Marson (2011): Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar): Effect of agitation, salinity and CO2 addition. Food and Bioproducts Processing, 89, 209-216  https://doi.org/10.1016/j.fbp.2010.04.009
 
Rosenthal A.J. (1999): Food Texture: Measurement and Perception. Gaithersburg, Aspen Publishers.
 
Selmo M.S., Salas-Mellado M.M. (2014): Technological quality of bread from rice flour with Spirulina. International Food Research Journal, 21: 1523–1528.
 
Shahbazizadeh Saeede, Khosravi-Darani Kianoush, Sohrabvandi Sara (2015): Fortification of Iranian Traditional Cookies with Spirulina platensis. Annual Research & Review in Biology, 7, 144-154  https://doi.org/10.9734/ARRB/2015/13492
 
Sharma V., Dunkwal V. (2012): Development of Spirulina based “biscuits”: a potential method of value addition. Studies on Ethno-Medicine, 6: 31–34.
 
Soheili Marzieh, Khosravi-Darani Kianoush (2011): The Potential Health Benefits of Algae and Micro Algae in Medicine: A Review on Spirulina platensis. Current Nutrition & Food Science, 7, 279-285  https://doi.org/10.2174/157340111804586457
 
Spolaore Pauline, Joannis-Cassan Claire, Duran Elie, Isambert Arsène (2006): Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87-96  https://doi.org/10.1263/jbb.101.87
 
Varga L., Szigeti J. (1998): Microbial changes in natural and algal yoghurts during storage. Acta Alimentaria, 27: 127–135.
 
Varga L., Szigeti J., Kovács R., Földes T., Buti S. (2002): Influence of a Spirulina platensis Biomass on the Microflora of Fermented ABT Milks During Storage (R1). Journal of Dairy Science, 85, 1031-1038  https://doi.org/10.3168/jds.S0022-0302(02)74163-5
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti