Control of selected fermentation indices by statistically designed experiments in industrial scale beer fermentation

https://doi.org/10.17221/291/2019-CJFSCitation:

Kucharczyk K., Żyła K., Tuszyński T. (2020): Control of selected fermentation indices by statistically designed experiments in industrial scale beer fermentation. Czech J. Food Sci., 38: 330–336.

download PDF

Fermentation indices of a bottom-fermented lager brew from high gravity wort (15.5 °P) were analysed using the response surface methodology (RSM, Box-Behnken design). Fermentation parameters like pitching rates (6–10 mln cells mL–1), wort aeration (8–12 mg O2 mL–1), different times (4.5–13.5 h) of filling CCTs (cylindroconical fermentation tanks; 3 850 hL) and fermentation temperatures (8.5–11.5 °C) were modulated to assess their impact on the fermentation indices. Within the studied ranges of fermentation parameters the experimental factors had a significant influence (R2 for the model 73%) on alcohol content, pH (83%), extract drop (86%), FAN consumption (70%), bitterness loss (73%) and sensory analysis (71%). Based on the multiple response optimisation analysis, the values of independent factors that optimised alcohol content at the level of 6.94% (v/v), extract drop at 1.77 °P per day with maximization of FAN consumption (ca. 128 mg L–1) and pH drop to the level of 4.69 with minimized bitter substances losses (6.2 BU) were as follows: pitching rate 6 mln cells mL–1; fermentation temperature 11.2 °C; aeration level 10.5 mg L–1; and CCTs filling time 13.5 h.

References:
Andres-Toro B., Giron-Sierra J.M., Lopez-Orozco J.A., Fernandez-Cond, C., Peinado J.M., Garcia-Ochoa F. (1998): A kinetic model for beer production under industrial operational conditions. Mathematics and Computers in Simulation, 48: 65–74. https://doi.org/10.1016/S0378-4754(98)00147-5
 
Cui Y., Wang J., Zhang Z., Speers A. (2015): Enhancing the levels of 4-vinyloguaiacol and 4-vinylophenol in pilot-scale top-fermented wheat beers by response surface methodology. Journal of the Institute of Brewing, 117: 475–487.
 
Dragone G., Silva D., Almeida e Silva J. (2004): Factors influencing ethanol production rates at high-gravity brewing. Lebensmittel-Wissenschaft und -Technologie, 37: 797–802.  https://doi.org/10.1016/j.lwt.2004.03.006
 
Erten H., Tanguler H., Cakiroz H. (2007): The effect of pitching rate on fermentation and flavour compounds in high gravity brewing. Journal of the Institute of Brewing, 113: 75–79. https://doi.org/10.1002/j.2050-0416.2007.tb00259.x
 
Jones H., Margaritis A., Stewart R. (2007): The combined effect of oxygen supply strategy, inoculum size and temperature profile on Very-High-Gravity beer fermentations by Saccharomyces cerevisiae. Journal of the Institute of Brewing, 113: 168–184. https://doi.org/10.1002/j.2050-0416.2007.tb00274.x
 
Kobayashi M., Nagahisa K., Shimizu H., Shioya S. (2006): Simultaneous control of apparent extract and volatile compounds concentrations in low-malt beer fermentation. Applied Microbiology and Biotechnology, 73: 549–558. https://doi.org/10.1007/s00253-006-0516-1
 
Kucharczyk K., Tuszyński T. (2015): The effect of pitching rate on fermentation, maturation and flavor compounds of beer produced on an industrial scale. Journal of the Institute of Brewing, 121: 349–355. https://doi.org/10.1002/jib.242
 
Kucharczyk K., Tuszyński T. (2017): The effect of wort aeration on fermentation, maturation and volatile components of beer produced on an industrial scale. Journal of the Institute of Brewing, 123: 31–38. https://doi.org/10.1002/jib.392
 
Kucharczyk K.; Żyła K.; Tuszyński T. (2020): Volatile esters and fusel alcohol concentrations in beer optimized by modulation of main fermentation parameters in an industrial plant. Processes, 8: 769. https://doi.org/10.3390/pr8070769
 
Lima L., Brandão T., Lima N., Teixeira J. (2011): Comparing the impact of environmental factors during very high gravity brewing fermentation. Journal of the Institute of Brewing, 3: 359–367. https://doi.org/10.1002/j.2050-0416.2011.tb00480.x
 
Miedaner H. (2002): Brewing technical analysis methods (Brautechnische analysenmethoden). Volume II, 4th Ed. Central European Brewing Technical Analysis Commission (Methodensammlung der Mitteleuropaischen Brautechnischen analysenkommision). Auflage, MEBAK. Germany, Freising-Weihenstephan: 35–37.(In German)
 
Nguyen T., Viet Man L.V. (2009): Using high pitching rate for improvement of yeast fermentation performance in high gravity brewing. Food Research International, 16: 547–554.
 
Ramirez W.F., Maciejewski J. (2007): Optimal beer fermentation. Journal of the Institute of Brewing, 113: 325–333. https://doi.org/10.1002/j.2050-0416.2007.tb00292.x
 
Verbelen P., Dekoninck T., Saerens S., Van Mulders S., Thevelein M., Delvaux F. (2009a): Impact of pitching rate on yeast fermentation performance and beer flavour. Applied Microbiology and Biotechnology, 82: 155–167.
 
Verbelen, P., Saerens, S., Mulders, S., Delvaux, F.R, Delvaux R. (2009b): The role of oxygen in yeast metabolism during high cell density brewery fermentations. Applied Microbiology and Biotechnology, 82: 1143–1156. https://doi.org/10.1007/s00253-009-1909-8
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti