Influence of co-encapsulation of Bifidobacterium animalis subsp. lactis Bb12 with inulin and ascorbic acid on its viabilityá M., Veselá K., Jokešová K., Klojdová I., Horáčková Š. (2020): Influence of co-encapsulation of Bifidobacterium animalis subsp. lactis Bb12 with inulin and ascorbic acid on its viability. Czech J. Food Sci., 38: 57-62.
download PDF

Eight types of capsules containing Bifidobacterium animalis subsp. lactis Bb12 with addition of inulin and/or ascorbic acid were prepared by emulsion method with milk protein matrix or by extrusion method with alginate matrix. The size of protein and alginate capsules containing only Bb12 was 204 ± 18 µm and 1.7 ± 0.1 mm, respectively. Addition of both inulin (1% w/w) and ascorbic acid (0.5% w/w) increased the size of alginate capsules. Both methods of encapsulation prevented efficiently the manifestation of Bb12 cell metabolic activity. All types of encapsulation provided higher resistance of Bb12 cells to the conditions of a model gastrointestinal tract (GIT) compared to free cells. The influence of co-encapsulation with inulin (1% w/w) and ascorbic acid (0.5% w/w) on viability in model GIT was not demonstrable in alginate capsules but it was significant in protein capsules. The most efficient was co-encapsulation in a protein matrix with 1% w/w inulin and 0.5% w/w ascorbic acid.

Atia A., Gomma A.I., Fliss I., Beyssac E., Garrait G., Subirade M. (2017): Molecular and biopharmaceutical investigation of alginate-inulin symbiotic to target the colon. Journal of Microencapsulation, 34: 171–184.
Bunesova V., Killer J., Javurkova B., Vlkova E., Tejnecky V., Musilova S., Rada V. (2017): Diversity of the subspecies Bifidobacterium animalis subsp. lactis. Anaerobe, 44: 40–47.
Champagne C.P., Fustier P. (2007): Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology, 18: 184–190.
Chen J., Wang Q., Liu C-M., Gong J. (2017): Issues deserve attention in encapsulating probiotics: Critical review of existing literature. Critical Reviews in Food Science and Nutrition, 57: 1228–1238.
Cook M.T., Tzortzis G., Charalampopoulos D., Khutoryanskiy V.V. (2011): Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria. Biomacromolecules, 12: 2834–2840.
FAO/WHO (2002): Guidelines for the Evaluation of Probiotics in Food. Available at (accessed Sept 5, 2019).
Fritzen-Freire C.B., Prudêncio E.S., Pinto S.S., Muñoz I.B., Amboni R.D.M.C. (2013): Effect of microencapsulation on survival of Bifidobacterium BB-12 exposed to simulated gastrointestinal conditions and heat treatments. LWT – Food Science and Technology, 50: 39–44.
Garaiova I., Muchová J., Nagyová Z., Wang D., Li J.V., Országhová Z., Michael D.R., Plummer S.F., Ďuračková Z. (2015). Probiotics and vitamin C for the prevention of respiratory tract infections in children attending preschool: a randomised controlled pilot study. European Journal of Clinical Nutrition, 69: 373–379.
Heidebach T., Först P., Kulozik U. (2009): Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food Hydrocolloids, 23: 1670–1677.
Jungersen M., Wind A., Johansen E., Christensen J.E., Stuer-Lauridsen B., Eskesen D. (2014): The science behind the probiotic strain Bifidobacterium animalis subsp. lactis BB-12. Microorganisms, 2: 92–110.
Karimi R., Mortazavian A.M., Da Cruz A.G. (2011): Viability of probiotic microorganisms in cheese during production and storage. Dairy Science & Technology, 91: 283–308.
Krasaekoopt W., Bhandari B., Deeth H. (2004): The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal, 14: 737–743.
Lee J., O’Sullivan D.J. (2010): Genomic insight into bifidobacteria. Microbiology and Molecular Biology Reviews, 74: 378–416.
Lisová I., Horáčková Š., Kováčová R., Rada V., Plocková M. (2013): Emulsion encapsulation of Bifidobacterium animalis subsp. lactis Bb12 with the addition of lecithin. Czech Journal of Food Sciences, 31: 270–274.
Madureira A.R., Amorim M., Gomes A.M., Pintado M.E., Malcata F.X. (2011): Protective effect of whey cheese matrix on probiotic strains exposed to simulated gastrointestinal conditions. Food Research International, 44: 465–470.
Martín M.J., Lara-Villoslada F., Ruiz M.A., Morales M.E. (2015): Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Inovative Food Science & Emerging Technologies, 27: 15–25.
Meyer D., Stasse-Wolthuis M. (2009): The bifidogenic effect of inulin and oligofructose and its consequences for gut health. European Journal of Clinical Nutrition, 63: 1277–1289.
O’Callaghan A., van Sinderen D. (2016): Bifidobacteria and their role as members of the human gut microbiota. Frontiers in Microbiology, 7: 925.
Sagheddu V., Elli M., Biolchi C., Lucido J., Morelli L. (2018): Impact of mode of assumption and food matrix on probiotic viability. Journal of Food Microbiology, 2: 1–6.
Shu G., Yang H., Tao Q., He Ch. (2013): Effect of Ascorbic Acid and Cysteine Hydrochloride on Growth of Bifidobacterium bifidum. Advance Journal of Food Science and Technology, 5: 678–681.
Turroni F., Berry D., Ventura M. (2017): Editorial: Bifidobacteria and their role in the human gut microbiota. Frontiers in Microbiology, 7: 2148.
Valero-Cases E., Frutos M.J. (2015): Effect of different types of encapsulation on the survival of Lactobacillus plantarum during storage with inuline and in vitro digestion. LWT – Food Science and Technology, 64: 824–828.
Vivek K.B. (2013): Use of encapsulated probiotics in dairy based foods. International Journal of Food, Agriculture and Veterinary Sciences, 3: 188–199.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti