Impact of antimicrobials, naturally produced by lactic acid bacteria, on the Listeria monocytogenes growth in minced salmon

https://doi.org/10.17221/342/2019-CJFSCitation:

Šalomskienė J., Jonkuvienė D., Mačionienė I., Narkevičius R., Riešutė R. (2020): Impact of antimicrobials, naturally produced by lactic acid bacteria, on the Listeria monocytogenes growth in minced salmon. Czech J. of Food Sci., 38: 280–286.

download PDF

The effect of antimicrobials produced by lactic acid bacteria (LAB) on the inhibition of Listeria monocytogenes ATCC 19111 in minced salmon was analysed and compared to the sodium lactate and bacteriophage action during storage at 6 °C. All tested additives showed a quite noticeable reduction of L. monocytogenes counts by 30–95% compared with control samples. Antimicrobials produced by the tested Enterococcus faecium strains showed moderate inhibitory activity while the greatest inhibitory activity was observed for antimicrobials produced by Streptococcus thermophilus 43 directly in the same way as the additive sodium lactate. The correlation was determined within inhibitory efficiency and produced total fatty acid amounts. S. thermophilus 43 showed the exceptionally stronger inhibition index for L. monocytogenes and yielded the higher monounsaturated fatty acid amount (42%) than E. faecium strains. Both E. faecium strains showing the lower inhibition efficiency produced the highest polyunsaturated fatty acid amounts (21.7–29.5%). E. faecium L41-2B-2v and S. thermophilus 43 were found to produce bioactive compounds like omega-3 and omega-6 FAs.

References:
Bigot B., Lee W.J., McIntyre L., Wilson T., Hudson J.A., Bil-lington C., Heinemann J.A. (2011): Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiology, 28: 1448–1452. https://doi.org/10.1016/j.fm.2011.07.001
 
Branciari R., Valiani A., Franceschini R., Ranucci D., Lupattelli A., Urbani E., Ortenzi R. (2016): Thermal inactivation and growth potential of Listeria monocytogenes in smoked tench. Italian Journal of Food Safety, 5: 5974. https://doi.org/10.4081/ijfs.2016.5974
 
Giannuzzi L., Zaritzky N.E. (1993): Chemical preservatives action on microbial growth in a model system of refrigerated prepeeled potatoes. Journal of Food Protection, 56: 801–807. https://doi.org/10.4315/0362-028X-56.9.801
 
Greer G.G. (1988): Effects of phage concentration, bacterial density, and temperature on phage control of beef spoilage. Journal of Food Science, 53: 1226–1227. https://doi.org/10.1111/j.1365-2621.1988.tb13570.x
 
Houtsma P.C., Kant-Muermans M.L., Rombouts F.M., Zwietering M.H. (1996): Model for the combined effects of temperature, pH, and sodium lactate on growth rates of Listeria innocua in broth and Bologna-type sausages. Applied and Environmental Microbiology, 62: 1616–1622. https://doi.org/10.1128/AEM.62.5.1616-1622.1996
 
Hwang C.A., Huang L., Sheen S., Juneja V. (2012): Effects of lactic acid on the growth characteristics of Listeria monocytogenes on cooked ham surfaces. Journal of Food Protection, 75: 1404–1410. https://doi.org/10.4315/0362-028X.JFP-11-412
 
Jonkuvienė D., Šalomskienė J., Zaborskienė G. (2014): Fatty acid profiling for assessment of diarrheal-type enterotoxin producing and nonproducing Bacillus cereus origin from foods getting into Lithuanian market. Journal of Food Safety, 34: 361–370. https://doi.org/10.1111/jfs.12136
 
Kamiloglu A., Kaban G., Kaya M. (2019): Effects of autochthonous Lactobacillus plantarum strains on Listeria monocytogenes in sucuk during ripening. Journal of Food Safety, 39: 1–6. https://doi.org/10.1111/jfs.12618
 
Martinez R.C.R., Staliano S.D., Vieira A.D.S., Villarreal M.L.M., Todorov S.D., Saad S.M. I., Franco B.D.G.M. (2015): Bacteriocin production and inhibition of Listeria monocytogenes by Lactobacillus sakei subsp. sakei 2a in a potentially synbiotic cheese spread. Food Microbiology, 48: 143–152. https://doi.org/10.1016/j.fm.2014.12.010
 
Porsby C.H., Vogel B.F., Mohr M., Gram L. (2008): Influence of processing steps in cold-smoked salmon production on survival and growth of persistent and presumed non-persistent Listeria monocytogenes. International Journal of Food Microbiology, 122: 287–295. https://doi.org/10.1016/j.ijfoodmicro.2008.01.010
 
Ress C.E.D., Doyle L., Taylor C.M. (2017): Listeria monocytogenes In: Dodd C., Aldsworth T., Stein R. (eds.): Fooodborne diseases. Elsevier, Amsterdam, Netherlands: 253–276.
 
Šalomskienė J., Abraitienė A., Jonkuvienė D., Mačionienė I., Repečkienė J., Zeime J., Vaiciulyte-Funk L. (2019): Differences in the occurence and efficiency of antimicrobial compounds produced by lactic acid bacteria. European Food Research and Technology, 245: 569–579. https://doi.org/10.1007/s00217-018-03227-3
 
Shelef L.A. (1994): Antimicrobial effects of lactates: A review. Journal of Food Protection, 57: 445–450. https://doi.org/10.4315/0362-028X-57.5.445
 
Soni K.A., Nannapaneni R., Hagens S. (2010): Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage Listex P100. Foodborne Pathogens and Disease, 7: 427–434. https://doi.org/10.1089/fpd.2009.0432
 
Vijayakumar P.P., Muriana P.M. (2017): Inhibition of Listeria monocytogenes on ready-to-eat meats using bacteriocin mixtures based on mode-of-action. Foods, 6: 22. https://doi.org/10.3390/foods6030022
 
Yang E., Fan L., Jiang Y., Doucette C., Fillmore S. (2012): Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express, 2: 48. https://doi.org/10.1186/2191-0855-2-48
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti