Computer vision techniques for modelling the roasting process of coffee (Coffea arabica L.) var. Castillo

https://doi.org/10.17221/346/2019-CJFSCitation:

Ivorra E., Sarria-González J.C., Girón-Hernández J. (2020): Computer vision techniques for modelling the roasting process of coffee (Coffea arabica L.) var. Castillo. Czech J. Food Sci., 38: 388–396.

download PDF

Artificial vision has wide-ranging applications in the food sector; it is easy to use, relatively low cost and allows to conduct rapid non-destructive analyses. The aim of this study was to use artificial vision techniques to control and model the coffee roasting process. Samples of Castillo variety coffee were used to construct the roasting curve, with captured images at different times. Physico-chemical determinations, such as colour, titratable acidity, pH, humidity and chlorogenic acids, and caffeine content, were investigated on the coffee beans. Data were processed by (i) Principal component analysis (PCA) to observe the aggrupation depending on the roasting time, and (ii) partial least squares (PLS) regression to correlate the values of the analytical determinations with the image information. The results allowed to construct robust regression models, where the colour coordinates (L*, a*), pH and titratable acidity presented excellent values in prediction (R2Pred 0.95, 0.91, 0.94 and 0.92). The proposed algorithms were capable to correlate the chemical composition of the beans at each roasting time with changes in the images, showing promising results in the modelling of the coffee roasting process.

References:
Aghbashlo M., Hosseinpour S., Ghasemi-Varnamkhasti, M. (2014): Computer vision technology for real-time food quality assurance during drying process. Trends in Food Science & Technology, 39: 76–84.
 
Alessandrini L., Romani S., Pinnavaia G., Dalla Rosa M. (2008): Near infrared spectroscopy: An analytical tool to predict coffee roasting degree. Analytica Chimica Acta, 625: 95–102. https://doi.org/10.1016/j.aca.2008.07.013
 
Barjolle D., Quiñones-Ruiz X., Bagal M., Comoé H. (2017): The role of the state for geographical indications of coffee: Case studies from Colombia and Kenya. World Development, 98: 105–119. https://doi.org/10.1016/j.worlddev.2016.12.006
 
Beucher S., Meyer F. (1993): The morphological approach to segmentation: The watershed transformation. In: Mathematical Morphology in Image Processing, 34: 433-481
 
Budryn G., Nebesny E., Podsddek A., Ôyrelewicz D., Materska M., Stefan J., Bogdan J. (2009): Effect of different extraction methods on the recovery of chlorogenic acids, caffeine and Maillard reaction products in coffee beans. European Food Research and Technology, 228: 913–922. https://doi.org/10.1007/s00217-008-1004-x
 
De Luca S., De Filippis M., Bucci R., Magrì A.D., Magrì A.L., Marini F. (2016): Characterization of the effects of different roasting conditions on coffee samples of different geographical origins by HPLC-DAD, NIR and chemometrics. Microchemical Journal, 129: 348–361. https://doi.org/10.1016/j.microc.2016.07.021
 
Fabbri A., Cevoli C., Alessandrini L., Romani S. (2011): Numerical modeling of heat and mass transfer during coffee roasting process. Journal of Food Engineering, 105: 264–269. https://doi.org/10.1016/j.jfoodeng.2011.02.030
 
Fadai N.T., Melrose J., Please C.P., Schulman A., Van Gorder, R.A. (2017): An heat and mass transfer study of coffee bean roasting. International Journal of Heat and Mass Transfer, 104: 787–799. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.083
 
Gabriel-Guzmán M., Rivera V.M., Cocotle-Ronzón Y., García-Díaz, S., Hernández-Martínez E. (2017): Fractality in coffee bean surface for roasting process. Chaos, Solitons and Fractals, 99: 79–84. https://doi.org/10.1016/j.chaos.2017.03.056
 
Garg S.K. (2016): Green Coffee Bean. In: Nutraceuticals. Academic Press: 653–667
 
Ginz M., Balzer,H.H., Bradbury,A.G.W., Maier H.G. (2000): Formation of aliphatic acids by carbohydrate degradation during roasting of coffee. European Food Research and Technology, 211: 404–410. https://doi.org/10.1007/s002170000215
 
Haralick R., Shanmugam K., Dinstein I. (1973): Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 3: 610–621. https://doi.org/10.1109/TSMC.1973.4309314
 
Hernández J. A., Heyd B., Trystram G. (2008): Prediction of brightness and surface area kinetics during coffee roastin. Journal of Food Engineering, 89: 156–163.
 
Mazzafera P. (1999): Chemical composition of defective coffee beans. Food Chemistry, 64: 547–554. https://doi.org/10.1016/S0308-8146(98)00167-8
 
Mery D., Pedreschi F., Soto A. (2013): Automated design of a computer vision system for visual food quality evaluation. Food and Bioprocess Technology, 6: 2093–2108. https://doi.org/10.1007/s11947-012-0934-2
 
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9: 62–66. https://doi.org/10.1109/TSMC.1979.4310076
 
Piccardi, M. (2004). Background subtraction techniques: A review. IEE Xplore, 4: 3099–3104.
 
Rodríguez Y.F.B., Guzmán N.G., Hernández J.G. (2020): Effect of the postharvest processing method on the biochemical composition and sensory analysis of arabica coffee. Engenharia Agrícola, 40: 177–183. https://doi.org/10.1590/1809-4430-eng.agric.v40n2p177-183/2020
 
SCA (2018): The Washed Arabica Green Coffee Defect Guide. 3rd Ed. Specialty Coffee Association. Chelmsford, United Kingdom: 1–36.
 
Santos J.R., Lopo M., Rangel A.O., Lopes J.A. (2016a): Exploiting near infrared spectroscopy as an analytical tool for on-line monitoring of acidity during coffee roasting. Food Control, 60: 408–415. https://doi.org/10.1016/j.foodcont.2015.08.007
 
Santos J.R., Viegas O., Páscoa R., Ferreira I., Rangel A., Lopes, J.A. (2016b): In-line monitoring of the coffee roasting process with near infrared spectroscopy: Measurement of sucrose and colour. Food Chemistry, 208: 103–110. https://doi.org/10.1016/j.foodchem.2016.03.114
 
Sarria-González J.C., Ivorra-Martínez E., Girón-Hernández J. (2019): Control of the coffee roasting stage using artificial vision techniques. Coffee Science, 14: 33–37. https://doi.org/10.25186/cs.v14i1.1517
 
Vala H. J., Astha B. (2013): An review on Otsu image segmentation algorithm. International Journal of Advanced Research in Computer Engineering & Technology, 2: 387–389.
 
Wang N., Lim L.T. (2012): Fourier transform infrared and physicochemical analyses of roasted coffee. Journal of Agricultural Food Chemestry, 60: 5446–5453. https://doi.org/10.1021/jf300348e
 
Wang Y., Ho C.T. (2013): Effects of naturally occurring phenolic compounds in coffee on the formation of maillard aromas. In: Ho Ch.T., Mussinan C., Shahidi F., Contis E.T. (eds): Nutrition, Functional and Sensory Properties of Foods, RSC publishing, UK: 98–110.
 
Wang X., Lim L. T. (2015): Physicochemical characteristics of roasted coffee. In: Preedy V.R. (ed.) Coffee in health and disease prevention. Elsevier Academic Press, USA: 247–1254.
 
Wei F., Furihata K., Koda M., Hu F., Miyakawa T., Tanokura M. (2012): Roasting process of coffee beans as studied by nuclear magnetic resonance: Time course of changes in composition. Journal of Agricultural and Food Chemistry, 60: 1005–1012. https://doi.org/10.1021/jf205315r
 
Wieland F., Gloess A., Keller M., Wetzel A., Schenker S., Yeretzian C. (2012): Online monitoring of coffee roasting by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS): Towards a real-time process control for a consistent roast profile. Analytical and Bioanalytical Chemistry, 402: 2531–2543. https://doi.org/10.1007/s00216-011-5401-9
 
Yun Y.H., Li H.D., Deng,B.C., Cao D.S. (2019). An overview of variable selection methods in multivariate analysis of near-infrared spectra. TrAC Trends in Analytical Chemistry, 113: 102–115. https://doi.org/10.1016/j.trac.2019.01.018
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti