Stickiness and agglomeration of blackberry and raspberry spray dried juices using agave fructans and maltodextrin as carrier agents

https://doi.org/10.17221/350/2018-CJFSCitation:

Farias-Cervantes V.S., Salinas-Moreno Y., Chávez-Rodríguez A., Luna-Solano G., Medrano-Roldan H., Andrade-González I. (2020): Stickiness and agglomeration of blackberry and raspberry spray dried juices using agave fructans and maltodextrin as carrier agents. Czech J. Food Sci., 38: 229–236.

download PDF

The present study shows the effect of agave fructans as a carrier agent compared with maltodextrin to evaluate the particle stability of blackberry and raspberry juices. A pilot spray dryer was used with feed flow of 20 mL h–1 and atomization rate of 28 000 rpm. The inlet air temperature of 180 °C and outlet air temperature of 80 °C were used as parameter constants. Only the parameters of the carrier agent concentration of 5, 7.5 to 10% (w/v) were changed. The concentration of 10% agave fructans was high enough to recover the higher yields of 89% only for blackberry, for raspberry the concentration of 7.5% agave fructans was sufficient to recover the yield of 67%. The stability diagrams show the conditions of the particles that should not be exceeded when leaving spray drying, as well as the storage conditions that must be followed to avoid agglomeration.

References:
Bhandari B.R., Datta N., Crooks R., Howes T., Rigby S. (1997): A semi-empirical approach to optimize the quantity of drying aids required to spray dry sugar-rich foods. Dry Technology, 15: 2509–2525. https://doi.org/10.1080/07373939708917373
 
Bhandari B.R., Senoussi A., Dumoulin E.D., Lebert A. (1993): Spray drying of concentrated fruit juices. Dry Technology, 11: 1081–1092. https://doi.org/10.1080/07373939308916884
 
Cai Y.Z., Corke H. (2000): Production and properties of spray dried Amaranthus betacyanin pigments. Journal Food Science, 65: 1248–1252. https://doi.org/10.1111/j.1365-2621.2000.tb10273.x
 
Du J., Ge Z., Xu Z., Zou B., Zhang Y., Li C. (2014): Comparison of the efficiency of five different drying carriers on the spray drying of persimmon pulp powders. Dry Technology, 32: 1157–1166. https://doi.org/10.1080/07373937.2014.886259
 
Fang Z.X., Bhandari B. (2012): Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Research International, 48: 478–483. https://doi.org/10.1016/j.foodres.2012.05.025
 
Fang Y., Rogers S., Selomulyaa C., Dong Chen X. (2012): Functionality of milk protein concentrate: Effect of spray drying temperature. Biochemical Engineering Journal, 62: 101–105. https://doi.org/10.1016/j.bej.2011.05.007
 
Farias-Cervantes V.S., Chávez-Rodríguez A., Delgado-Licon E., Aguilar J., Medrano-Roldan H., Andrade-González I. (2016): Effect of spray drying of agave fructans, nopal mucilage and aloe vera juice. Journal of Food Processing and Preservation, 41: e13027.
 
Ferrari C.C., Germer S.P.M., Alvim I.D., Vissotto F.Z., de Aguirre J.M. (2012): Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. International Journal of Food Science and Technology, 47: 1237–1245. https://doi.org/10.1111/j.1365-2621.2012.02964.x
 
Ferrari C.C., Marconi Germer S.P., Alvim I.D., De Aguirre J.M. (2013): Storage stability of spray-dried blackberry powder produced with maltodextrin or gum Arabic. Dry Technology, 31: 470–478. https://doi.org/10.1080/07373937.2012.742103
 
Goula A.M., Adamopoulos K.G. (2010): A new technique for spray drying orange juice concentrate. Innovative Food Science and Emerging Technologies, 11: 342–351. https://doi.org/10.1016/j.ifset.2009.12.001
 
Goula A.M., Karapantsios T.D., Achilias D.S., Adamopoulos K.G. (2008): Water sorption isotherms and glass transition temperature of spray dried tomato pulp. Journal of Food Engineering, 85: 73–83.
 
Grabowski J.A., Truong V.D., Daubert C.R. (2006): Spray drying of amylase hydrolyzed sweet potato puree and physicochemical properties of powder. Journal Food Science, 71: E209–E217.
 
León F.M.M., Méndez L.L.L., Rodríguez J.R. (2010): Spray drying of nopal mucilage (Opuntia ficus-indica): Effects on powder properties and characterization. Carbohydrate Polymers, 81: 864–870. https://doi.org/10.1016/j.carbpol.2010.03.061
 
Moreno T., de Paz E., Navarro I., Rodríguez‐Rojo S., Matías A., Duarte C., Cocero M. J. (2016): Spray drying formulation of polyphenols‐rich grape marc extract: Evaluation of operating conditions and different natural carriers. Food and Bioprocess Technology, 9, 2046–2058. https://doi.org/10.1007/s11947-016-1792-0
 
Nayak C.A., Rastogi N.K. (2010): Effect of selected additives on microencapsulation of anthocyanin by spray drying. Dry Technology, 28: 1396–1404. https://doi.org/10.1080/07373937.2010.482705
 
Ortiz-Basurto R.I., Rubio-Ibarra M.E., Ragazzo-Sanchez J.A., Beristainb C.I., Jiménez-Fernández M. (2017): Microencapsulation of Eugenia uniflora L. juice by spray drying using fructans with different degrees of polymerization. Carbohydrate Polymers, 175: 603–609. https://doi.org/10.1016/j.carbpol.2017.08.030
 
Ozmen L., Langrish T.A.G. (2002): Comparison of glass transition temperature and sticky point temperature for skim milk powder. Dry Technology, 20: 1177–1192. https://doi.org/10.1081/DRT-120004046
 
Palatnik D.R., Aldrete Herrera P., Rinaldoni A.N., Ortiz Basurto R.I., Campderrós M.E. (2017): Development of reduced-fat cheeses with theaddition of Agave fructans. International Journal of Dairy Technology, 70: 212–219. https://doi.org/10.1111/1471-0307.12334
 
Righetto A.M., Netto F.M. (2005): Effect of encapsulating materials on water sorption, glass transition and stability of juice from immature acerola. International Journal of Food Properties, 8: 337–346. https://doi.org/10.1081/JFP-200060262
 
Shrestha A.K., Ua-rak T., Adhikari B.P., Howes T., Bhandari B.R. (2007): Glass transition behaviour of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test. International Journal of Food Properties, 10: 661–673. https://doi.org/10.1080/10942910601109218
 
Silva V.M., Vieira G.S., Hubinger M.D. (2014): Influence of different combinations of wall materials and homogenization pressure on the microencapsulation of green coffee oil by spray drying. Food Research International, 61: 132–143. https://doi.org/10.1016/j.foodres.2014.01.052
 
Syamaladevi R.M., Insan S.K., Dhawan S., Andrews P., Sablani S.S. (2012): Physicochemicals properties of encapsulated red raspberry (Rubus idaeus) powder: Influence of high-pressure homogenization. Dry Technology, 30: 484–493. https://doi.org/10.1080/07373937.2011.647369
 
Tonon R.V., Brabet C., Pallet D., Brat P., Hubinger M.D. (2009): Physicochemical and morphological characterization of acai (Euterpe oleraceae Mart.) powder produced with different carrier agents. International Journal of Food Science & Technology, 44: 1950–1958.
 
Vega C., Goff H.D., Roos Y.H. (2005): Spray drying of high-sucrose dairy emulsions: Feasibility and physicochemical properties. Journal Food Science, 70: 244–251. https://doi.org/10.1111/j.1365-2621.2005.tb07142.x
 
Xie L.J., Ye X.Q., Liu D.H., Ying Y.B. (2009): Quantification of glucose, fructose and sucrose in bayberry juice by NIR and PLS. Food Chemistry, 114: 1135–1140. https://doi.org/10.1016/j.foodchem.2008.10.076
 
download PDF

© 2020 Czech Academy of Agricultural Sciences