Infrared drying of bee pollen: effects and impacts on food components

https://doi.org/10.17221/410/2017-CJFSCitation:Isik A., Ozdemir M., Doymaz I. (2019): Infrared drying of bee pollen: effects and impacts on food components. Czech J. Food Sci., 37: 69-74.
download PDF

Infrared radiation drying being one of the innovative drying methods was chosen to perform comparative study at different infrared power levels at 50, 62, 74 and 88 W. Quality attributes such as protein, fat, ash, carbohydrate, vitamin C content, solubility index and colour of infrared dried bee pollen samples were evaluated. The infrared power has a significant effect on the drying and quality characteristics especially colour. Drying time was reduced from 170 to 50 min when the infrared power level increased from 50 W to 88 W. Morphological changes on the surface of bee pollen grains increased with increasing the infrared power. The bee pollen infrared dried at 50 W retained its quality characteristics better than the bee pollens infrared dried at other power levels.

References:
Adak Nafiye, Heybeli Nursel, Ertekin Can (2017): Infrared drying of strawberry. Food Chemistry, 219, 109-116  https://doi.org/10.1016/j.foodchem.2016.09.103
 
Almeida-Muradian L.B., Pamplona Lucila C., Coimbra Sı́lvia, Barth Ortrud Monika (2005): Chemical composition and botanical evaluation of dried bee pollen pellets. Journal of Food Composition and Analysis, 18, 105-111  https://doi.org/10.1016/j.jfca.2003.10.008
 
BARAJAS JOHANNA, CORTES-RODRIGUEZ MISAEL, RODRÍGUEZ-SANDOVAL EDUARDO (2012): EFFECT OF TEMPERATURE ON THE DRYING PROCESS OF BEE POLLEN FROM TWO ZONES OF COLOMBIA. Journal of Food Process Engineering, 35, 134-148  https://doi.org/10.1111/j.1745-4530.2010.00577.x
 
Bogdanov S. (2004): Quality and standards of pollen and beeswax. Apiacta, 38: 334–341.
 
Campos Maria G. R., Bogdanov Stefan, de Almeida-Muradian Ligia Bicudo, Szczesna Teresa, Mancebo Yanina, Frigerio Christian, Ferreira Francisco (2015): Pollen composition and standardisation of analytical methods. Journal of Apicultural Research, 47, 154-161  https://doi.org/10.1080/00218839.2008.11101443
 
Cao Zhen-zhen, Zhou Lin-yan, Bi Jin-feng, Yi Jian-yong, Chen Qin-qin, Wu Xin-ye, Zheng Jin-kai, Li Shu-rong (2016): Effect of different drying technologies on drying characteristics and quality of red pepper ( Capsicum frutescens L.): a comparative study. Journal of the Science of Food and Agriculture, 96, 3596-3603  https://doi.org/10.1002/jsfa.7549
 
Carpes S.T., Cabral I.S.R., Rosalen P.I., de Alencar S.M., Masson M.L. (2009): Caracterização do potencial antimicrobiano dos extratos de pólen apícola da região Sul do Brasil. Alimentos e Nutrição Araraquara, 20: 271–277.
 
Doymaz İbrahim (2014): Mathematical Modeling of Drying of Tomato Slices Using Infrared Radiation. Journal of Food Processing and Preservation, 38, 389-396  https://doi.org/10.1111/j.1745-4549.2012.00786.x
 
Doymaz İbrahim (2015): Infrared Drying Kinetics and Quality Characteristics of Carrot Slices. Journal of Food Processing and Preservation, 39, 2738-2745  https://doi.org/10.1111/jfpp.12524
 
Doymaz İbrahim (2018): Infrared drying of kiwifruit slices. International Journal of Green Energy, 15, 622-628  https://doi.org/10.1080/15435075.2018.1525735
 
Estevinho Leticia M., Rodrigues Sandra, Pereira Ana P., Feás Xesús (2012): Portuguese bee pollen: palynological study, nutritional and microbiological evaluation. International Journal of Food Science & Technology, 47, 429-435  https://doi.org/10.1111/j.1365-2621.2011.02859.x
 
Jiang Hao, Zhang Min, Mujumdar Arun S, Lim Rui-Xin (2014): Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying. Journal of the Science of Food and Agriculture, 94, 1827-1834  https://doi.org/10.1002/jsfa.6501
 
MIRELES-ARRIAGA Ana Isabel, RUIZ-LÓPEZ Irving Israel, HERNÁNDEZ-GARCÍA Pedro Abel, ESPINOSA-AYALA Enrique, LÓPEZ-MARTÍNEZ Leticia Xóchitl, MÁRQUEZ-MOLINA Ofelia (2016): The impact of convective drying on the color, phenolic content and antioxidant capacity of noni (Morinda citrifolia L.). Food Science and Technology, 36, 583-590  https://doi.org/10.1590/1678-457x.00415
 
Olanipekun B.F., Tunde-Akintunde T.Y., Oyelade O.J., Adebisi M.G., Adenaya T.A. (2015): Mathematical Modeling of Thin-Layer Pineapple Drying. Journal of Food Processing and Preservation, 39, 1431-1441  https://doi.org/10.1111/jfpp.12362
 
Oliveira Karla C. L. S., Moriya Marina, Azedo Ricardo A. B., Almeida-Muradian Ligia B. de, Teixeira Erica W., Alves Maria L. T. M. F., Moreti Augusta C. de C. C. (2009): Relationship between botanical origin and antioxidants vitamins of bee-collected pollen. Química Nova, 32, 1099-1102  https://doi.org/10.1590/S0100-40422009000500003
 
Pelletier Sophie, Tremblay Gaëtan F., Bertrand Annick, Bélanger Gilles, Castonguay Yves, Michaud Réal (2010): Drying procedures affect non-structural carbohydrates and other nutritive value attributes in forage samples. Animal Feed Science and Technology, 157, 139-150  https://doi.org/10.1016/j.anifeedsci.2010.02.010
 
RAYAGURU KALPANA, ROUTRAY WINNY, MOHANTY S.N. (2011): MATHEMATICAL MODELING AND QUALITY PARAMETERS OF AIR-DRIED BETEL LEAF (PIPER BETLE L.). Journal of Food Processing and Preservation, 35, 394-401  https://doi.org/10.1111/j.1745-4549.2010.00480.x
 
Sadin Rasool, Chegini Gholam-Reza, Sadin Hassan (2014): The effect of temperature and slice thickness on drying kinetics tomato in the infrared dryer. Heat and Mass Transfer, 50, 501-507  https://doi.org/10.1007/s00231-013-1255-3
 
Villanueva M.T. Orzáez, Marquina A. Díaz, Serrano R. Bravo, Abellán G. Blazquez (2009): The importance of bee-collected pollen in the diet: a study of its composition. International Journal of Food Sciences and Nutrition, 53, 217-224  https://doi.org/10.1080/09637480220132832
 
download PDF

© 2020 Czech Academy of Agricultural Sciences