Visceral oil from farmed Sparus aurata, Dicentrarchus labrax and Diplodus puntazzo as a source of ω-3 PUFA

https://doi.org/10.17221/448/2016-CJFSCitation:Sinanoglou V., Houhoula D., Kyrana V., Lougovois V. (2017): Visceral oil from farmed Sparus aurata, Dicentrarchus labrax and Diplodus puntazzo as a source of ω-3 PUFA. Czech J. Food Sci., 35: 414-423.
download PDF
Crude oils recovered from the viscera of conventionally and organically farmed gilthead sea bream (Sparus aurata), European seabass (Dicentrarchus labrax) and sharpsnout sea bream (Diplodus puntazzo) were characterised. Triacylglycerols (TAG) and phospholipids (PL) were the major lipid classes. Visceral oils contained high levels of n-3 polyunsaturated fatty acids (PUFA), in particular docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). The DHA/EPA ratios (range 1.66–2.46) were higher in organically farmed fish. Total PUFA and n-3 fatty acid levels varied according to both species and rearing system, and were higher in the conventionally farmed sparids. The ratios of n-3 to n-6 PUFA (1.42–2.19) were comparable to the values reported for muscle lipids, while the PUFA/SFA ratios (1.07–1.33) exceeded the recommended value. Visceral oils exhibited good oxidative stability, as judged by monitoring lipid oxidation products during storage at 63°C. These data indicate that the viscera of all three species may represent a good source for the production of omega-3 rich oils.
References:
Anedda Roberto, Piga Carlo, Santercole Viviana, Spada Simona, Bonaglini Elia, Cappuccinelli Roberto, Mulas Gilberto, Roggio Tonina, Uzzau Sergio (2013): Multidisciplinary analytical investigation of phospholipids and triglycerides in offshore farmed gilthead sea bream (Sparus aurata) fed commercial diets. Food Chemistry, 138, 1135-1144  https://doi.org/10.1016/j.foodchem.2012.11.098
 
Benedito-Palos Laura, Bermejo-Nogales Azucena, Karampatos Alexandros I., Ballester-Lozano Gabriel F., Navarro Juan C., Diez Amalia, Bautista José M., Bell J. Gordon, Tocher Douglas R., Obach Alex, Kaushik Sadasivam, Pérez-Sánchez Jaume (2011): Modelling the predictable effects of dietary lipid sources on the fillet fatty acid composition of one-year-old gilthead sea bream (Sparus aurata L.). Food Chemistry, 124, 538-544  https://doi.org/10.1016/j.foodchem.2010.06.066
 
Boran Gökhan, Karaçam Hikmet, Boran Muhammet (2006): Changes in the quality of fish oils due to storage temperature and time. Food Chemistry, 98, 693-698  https://doi.org/10.1016/j.foodchem.2005.06.041
 
Crexi Valéria T., Souza-Soares Leonor A., Pinto Luiz A. A. (2009): Carp ( Cyprinus carpio ) oils obtained by fishmeal and ensilage processes: characteristics and lipid profiles. International Journal of Food Science & Technology, 44, 1642-1648  https://doi.org/10.1111/j.1365-2621.2009.01982.x
 
Crexi Valéria Terra, Monte Mauricio Legemann, Soares Leonor Almeida de Souza, Pinto Luiz Antonio Almeida (2010): Production and refinement of oil from carp (Cyprinus carpio) viscera. Food Chemistry, 119, 945-950  https://doi.org/10.1016/j.foodchem.2009.07.050
 
Dumay J., Donnay-Moreno C., Barnathan G., Jaouen P., Bergé J.P. (2006): Improvement of lipid and phospholipid recoveries from sardine (Sardina pilchardus) viscera using industrial proteases. Process Biochemistry, 41, 2327-2332  https://doi.org/10.1016/j.procbio.2006.04.005
 
Fiori L., Solana M., Tosi P., Manfrini M., Strim C., Guella G. (2012): Lipid profiles of oil from trout (Oncorhynchus mykiss) heads, spines and viscera: Trout by-products as a possible source of omega-3 lipids? Food Chemistry, 134: 1088–1095.
 
Grigorakis Kriton (2007): Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: A review. Aquaculture, 272, 55-75  https://doi.org/10.1016/j.aquaculture.2007.04.062
 
Holub Bruce J. (2009): Docosahexaenoic acid (DHA) and cardiovascular disease risk factors. Prostaglandins, Leukotrienes and Essential Fatty Acids, 81, 199-204  https://doi.org/10.1016/j.plefa.2009.05.016
 
Lu F.S.H., Nielsen N.S., Baron C.P., Jacobsen C. (2012): Oxidative degradation and non-enzymatic browning due to the interaction between oxidised lipids and primary amine groups in different marine PL emulsions. Food Chemistry, 135, 2887-2896  https://doi.org/10.1016/j.foodchem.2012.07.008
 
Lu F.S.H., Nielsen N.S., Baron C.P., Diehl B.W.K., Jacobsen C. (2013): Impact of primary amine group from aminophospholipids and amino acids on marine phospholipids stability: Non-enzymatic browning and lipid oxidation. Food Chemistry, 141, 879-888  https://doi.org/10.1016/j.foodchem.2013.03.063
 
Majolini Duilio, Trocino Angela, Xiccato Gerolamo, Santulli Andrea (2016): Near infrared reflectance spectroscopy (NIRS) characterization of European sea bass (Dicentrarchus labrax) from different rearing systems. Italian Journal of Animal Science, 8, 860-862  https://doi.org/10.4081/ijas.2009.s2.860
 
Nazeer Rasool Abdul, Kumar Nune Satya Sampath (2012): Fatty acid composition of horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber). Asian Pacific Journal of Tropical Disease, 2, S933-S936  https://doi.org/10.1016/S2222-1808(12)60294-1
 
Oliveira A. C. M., Bechtel P. J. (2008): Lipid Composition of Alaska Pink Salmon (Oncorhynchus gorbuscha) and Alaska Walleye Pollock (Theragra chalcogramma) Byproducts. Journal of Aquatic Food Product Technology, 14, 73-91  https://doi.org/10.1300/J030v14n01_07
 
Rondan M., Hernandez Ma.D., Egea Ma.A., Garcia B., Rueda F.M., Martinez F.J. (2004): Effect of feeding rate on fatty acid composition of sharpsnout seabream (Diplodus puntazzo). Aquaculture Nutrition, 10, 301-307  https://doi.org/10.1111/j.1365-2095.2004.00304.x
 
Rustad Turid, Storrø Ivar, Slizyte Rasa (2011): Possibilities for the utilisation of marine by-products. International Journal of Food Science & Technology, 46, 2001-2014  https://doi.org/10.1111/j.1365-2621.2011.02736.x
 
Sahena F., Zaidul I.S.M., Jinap S., Yazid A.M., Khatib A., Norulaini N.A.N. (2010): Fatty acid compositions of fish oil extracted from different parts of Indian mackerel (Rastrelliger kanagurta) using various techniques of supercritical CO2 extraction. Food Chemistry, 120, 879-885  https://doi.org/10.1016/j.foodchem.2009.10.055
 
Sathivel Subramaniam, Prinyawiwatkul Witoon, Grimm Casey C., King Joan M., Lloyd Steven (2002): FA composition of crude oil recovered from catfish viscera. Journal of the American Oil Chemists' Society, 79, 989-992  https://doi.org/10.1007/s11746-002-0592-5
 
Sathivel Subramaniam, Prinyawiwatkul Witoon, King Joan M., Grimm Casey C., Lloyd Steven (2003): Oil production from catfish viscera. Journal of the American Oil Chemists' Society, 80, 377-382  https://doi.org/10.1007/s11746-003-0707-z
 
Simopoulos A.P. (2002): The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy, 56: 365–379.
 
Sinanoglou Vassilia J, Miniadis-Meimaroglou Sofia (1998): Fatty acid of neutral and polar lipids of (edible) Mediterranean cephalopods. Food Research International, 31, 467-473  https://doi.org/10.1016/S0963-9969(99)00014-9
 
Sinanoglou Vassilia J., Strati Irini F., Bratakos Sotirios M., Proestos Charalampos, Zoumpoulakis Panagiotis, Miniadis-Meimaroglou Sofia (2013): On the Combined Application of Iatroscan TLC-FID and GC-FID to Identify Total, Neutral, and Polar Lipids and Their Fatty Acids Extracted from Foods. ISRN Chromatography, 2013, 1-8  https://doi.org/10.1155/2013/859024
 
Sinanoglou Vassilia J., Proestos Charalampos, Lantzouraki Dimitra Z., Calokerinos Antony C., Miniadis-Meimaroglou Sofia (2014): Lipid evaluation of farmed and wild meagre ( Argyrosomus regius ). European Journal of Lipid Science and Technology, 116, 134-143  https://doi.org/10.1002/ejlt.201300346
 
TESTI S, BONALDO A, GATTA P, BADIANI A (2006): Nutritional traits of dorsal and ventral fillets from three farmed fish species. Food Chemistry, 98, 104-111  https://doi.org/10.1016/j.foodchem.2005.05.053
 
Thammapat Pornpisanu, Raviyan Patcharin, Siriamornpun Sirithon (2010): Proximate and fatty acids composition of the muscles and viscera of Asian catfish (Pangasius bocourti). Food Chemistry, 122, 223-227  https://doi.org/10.1016/j.foodchem.2010.02.065
 
Trocino Angela, Xiccato Gerolamo, Majolini Duilio, Tazzoli Marco, Bertotto Daniela, Pascoli Francesco, Palazzi Renato (2012): Assessing the quality of organic and conventionally-farmed European sea bass (Dicentrarchus labrax). Food Chemistry, 131, 427-433  https://doi.org/10.1016/j.foodchem.2011.08.082
 
Turchini Giovanni M., Torstensen Bente E., Ng Wing-Keong (2009): Fish oil replacement in finfish nutrition. Reviews in Aquaculture, 1, 10-57  https://doi.org/10.1111/j.1753-5131.2008.01001.x
 
Yin Huaixia, Sathivel Subramaniam (2010): Physical Properties and Oxidation Rates of Unrefined Menhaden Oil ( Brevoortia patronus ). Journal of Food Science, 75, E163-E168  https://doi.org/10.1111/j.1750-3841.2010.01532.x
 
Zhong Ying, Madhujith Terrence, Mahfouz Nadia, Shahidi Fereidoon (2007): Compositional characteristics of muscle and visceral oil from steelhead trout and their oxidative stability. Food Chemistry, 104, 602-608  https://doi.org/10.1016/j.foodchem.2006.12.036
 
Zuta Charles P., Simpson Ben K., Chan Hing Man, Phillips Leroy (2003): Concentrating PUFA from mackerel processing waste. Journal of the American Oil Chemists' Society, 80, 933-936  https://doi.org/10.1007/s11746-003-0799-5
 
Zuta P.C., Simpson B.K., Zhao X., Leclerc L. (2007): The effect of α-tocopherol on the oxidation of mackerel oil. Food Chemistry, 100, 800-807  https://doi.org/10.1016/j.foodchem.2005.11.003
 
download PDF

© 2019 Czech Academy of Agricultural Sciences