Enhancement of GABA content in Hongqu wine by optimisation of fermentation conditions using response surface methodology

https://doi.org/10.17221/47/2021-CJFSCitation:

Song C., Zhu L., Shao Y., Chen F. (2021): Enhancement of GABA content in Hongqu wine by optimisation of fermentation conditions using response surface methodology. Czech J. Food Sci., 39: 297–304.

supplementary materialdownload PDF

γ-aminobutyric acid (GABA) is an important inhibitory neurotransmitter in the human body, but its content decreases with age. So it is suitable to supplement the body's GABA from diet. Hongqu wine is popular because of the addition of Monascus strains in the saccharification process, which makes the wine rich in functional ingredients such as GABA, and monacolin K. In this study, the fermentation parameters of Hongqu wine were optimised to maximise the GABA content through response surface methodology (RSM). The optimal conditions were as follows: 500 g of steamed rice was mixed with 115.4% of boiled water containing 10 g of sodium glutamate and adjusted to pH 3.8 with lactic acid, and then 32% of Hongqu seed inoculum was added. After 5 days of fermentation at 28 °C, 1.5 g of activated yeast was inoculated for ethanol fermentation at 30 °C for 5 days. Finally, the average content of GABA in Hongqu wine amounted to 710.24 mg L–1, which is close to the value predicted by RSM model (692.44 mg L–1), indicating the statistical fit is good. This provided technical support and theoretical guidance for the production of Hongqu wine rich in GABA by two-stage fermentation.

References:
Alamäe T., Järviste A. (1995): Permeabilization of the methylotrophic yeast Pichia pinus for intracellular enzyme analysis: A quantitative study. Journal of Microbiological Methods, 22: 193–205. https://doi.org/10.1016/0167-7012(95)00007-8
 
Bown A.W., Shelp B.J. (1997): The metabolism and functions of gamma-aminobutyric acid. Plant Physiology, 115: 1–5. https://doi.org/10.1104/pp.115.1.1
 
Cai Q.Q., Zhou K.X., Liu Z.B., Zhang C., Zhang W., Ni L. (2019): Studies on growth inhibitory factors of Monascus in the brewing process of Hongqu rice wine. Journal of Chinese Institute of Food Science and Technology, 19: 143–149.
 
Chen C.X., Chen F.S. (2009): Study on the conditions to brew rice vinegar with high content of γ-amino butyric acid by response surface methodology. Food and Bioproducts Processing, 87: 334–340. https://doi.org/10.1016/j.fbp.2009.03.003
 
Chen T., Qi X.P., Chen M.J., Lu D.L., Chen B. (2020): Discrimination of Chinese yellow wine from different origins based on flavor fingerprint. Acta Chromatographica, 32: 139–144. https://doi.org/10.1556/1326.2019.00613
 
Lu F.J., Peng B., He S.G., Wu Z.Q. (2019): Effect of Hongqu rice addition on polyphenol components and antioxidant properties of Hongqu rice wine. China Brewing, 38: 113–118. (in Chinese)
 
Que F., Mao L.C., Zhu C.G., Xie G.F. (2006): Antioxidant properties of Chinese yellow wine, its concentrate and volatiles. LWT – Food Science and Technology, 39: 111–117. https://doi.org/10.1016/j.lwt.2005.01.001
 
Feng Y.L., Shao Y.C., Zhou Y.X., Chen F.S. (2014): Production and optimization of monacolin K by citrinin-free Monascus pilosus MS-1 in solid-state fermentation using non-glutinous rice and soybean flours as substrate. European Food Research and Technology, 239: 629–636. https://doi.org/10.1007/s00217-014-2259-z
 
Hayakawa K., Kimura M., Kasaha K., Matsumoto K., Sansawa H., Yamori Y. (2004): Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. British Journal of Nutrition, 92: 411–417. https://doi.org/10.1079/BJN20041221
 
Journoud M., Jones P.J.H. (2004): Red yeast rice: A new hypolipidemic drug. Life Sciences, 74: 2675–2683. https://doi.org/10.1016/j.lfs.2003.10.018
 
Kono I., Himeno K. (2000): Changes in γ-aminobutyric acid content during beni-koji making. Bioscience, Biotechnology, and Biochemistry, 64: 617–619. https://doi.org/10.1271/bbb.64.617
 
Li N.N., Liu Y., Zhao Y., Zheng X.Q., Lu J.L., Liang Y.R. (2016): Simultaneous HPLC determination of amino acids in tea infusion coupled to pre-column derivatization with 2,4-dinitrofluorobenzene. Food Analytical Methods, 9: 1307–1314. https://doi.org/10.1007/s12161-015-0310-8
 
Liang Z.C., Lin X.Z., He Z.G., Li W.X., Ren X.Y., Lin X.J. (2020): Dynamic changes of total acid and bacterial communities during the traditional fermentation of Hong Qu glutinous rice wine. Electronic Journal of Biotechnology, 43: 23–31. https://doi.org/10.1016/j.ejbt.2019.12.002
 
Lv X.C., Huang R.L., Chen F., Zhang W., Rao P.F., Ni L. (2013): Bacterial community dynamics during the traditional brewing of Wuyi Hong Qu glutinous rice wine as determined by culture-independent methods. Food Control, 34: 300–306. https://doi.org/10.1016/j.foodcont.2013.05.003
 
Ma W.Y., Zhang J., Shu L., Tan X.Q., An Y., Yang X.D., Wang D.P., Gao Q. (2020): Optimization of spray drying conditions for the green manufacture of γ-aminobutyric acid-rich powder from Lactobacillus brevis fermentation broth. Biochemical Engineering Journal, 156: 107499. https://doi.org/10.1016/j.bej.2020.107499
 
Qian M., Liu J.X., Mo Y.C., Zhu H., Zhao W.H., Bai W.D. (2016): Process optimization of Guangdong Hakka rice wine containing GABA. China Brewing, 35: 123–126. (in Chinese)
 
Sayyad S.A., Panda B.P., Javed S., Ali M. (2007): Optimization of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using response surface methodology. Applied Microbiology and Biotechnology, 73: 1054–1058. https://doi.org/10.1007/s00253-006-0577-1
 
Shen F., Li F.Z., Liu D.L., Xu H.R., Ying Y.B., Li B.B. (2012a): Ageing status characterization of Chinese rice wines using chemical descriptors combined with multivariate data analysis. Food Control, 25: 458–463. https://doi.org/10.1016/j.foodcont.2011.11.019
 
Shen F., Yang D.T., Ying Y.B., Li B.B., Zheng Y.F., Jiang T. (2012b): Discrimination between Shaoxing wines and other chinese rice wines by near-infrared spectroscopy and chemometrics. Food and Bioprocess Technology, 5: 786–795. https://doi.org/10.1007/s11947-010-0347-z
 
Tan J., Chu J., Shi W.J., Lin C., Guo Y.X., Zhuang Y.P., Zhang S.L., Imanaka T. (2012): High-throughput screening strategy used for enhanced production of pigment by Monascus purpureus D39-4. Food Science and Biotechnology, 21: 1603–1610. https://doi.org/10.1007/s10068-012-0213-z
 
Tian Y.T., Huang J.M., Xie T.T., Huang L.Q., Zhuang W.J., Zheng Y.F., Zheng B.D. (2016): Oenological characteristics, amino acids and volatile profiles of Hongqu rice wines during pottery storage: Effects of high hydrostatic pressure processing. Food Chemistry, 203: 456–464. https://doi.org/10.1016/j.foodchem.2016.02.116
 
Wang J.J., Lee C.L., Pan T.M. (2003): Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. Journal of Industrial Microbiology and Biotechnology, 30: 669–676. https://doi.org/10.1007/s10295-003-0097-2
 
Wu Z.Z., Xu E.B., Long J., Wang F., Xu X.M., Jin Z.Y., Jiao A.Q. (2015): Rapid measurement of antioxidant activity and γ-aminobutyric acid content of Chinese rice wine by Fourier-transform near infrared spectroscopy. Food Analytical Methods, 8: 2541–2553. https://doi.org/10.1007/s12161-015-0144-4
 
Xu J.L., Wu H.J., Wang Z.W., Zheng F.P., Lu X., Li Z.P., Ren Q. (2018): Microbial dynamics and metabolite changes in Chinese rice wine fermentation from sorghum with different tannin content. Scientific Reports, 8: 4639. https://doi.org/10.1038/s41598-018-23013-1
 
Yamatsu A., Yamashita Y., Pandharipande T., Maru I., Kim M. (2016): Effect of oral gamma-aminobutyric acid (GABA) administration on sleep and its absorption in humans. Food Science and Biotechnology, 25: 547–551. https://doi.org/10.1007/s10068-016-0076-9
 
Yolmeh M., Jafari S.M. (2017): Applications of response surface methodology in the food industry processes. Food and Bioprocess Technology, 10: 413–433. https://doi.org/10.1007/s11947-016-1855-2
 
supplementary materialdownload PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti