Biofilm formation by Pseudomonas aeruginosa and disinfectant susceptibility of planktonic and biofilm cells

https://doi.org/10.17221/528/2015-CJFSCitation:Magdalena A O., Aleksandra M K., Aleksandra S., Łucja Ł. (2016):  Biofilm formation by Pseudomonas aeruginosa and disinfectant susceptibility of planktonic and biofilm cells. Czech J. Food Sci., 34: 204-210.
download PDF
Epifluorescence microscopy (EFM) was used to study the biofilm formation of Pseudomonas aeruginosa after 6, 24, 30, 48, 54, 72, 78, and 96 h growth in a chamber slide system. For this purpose, the biofilm was stained with the Live/Dead BacLight, wherein live and dead cells were visualised based on the cell membrane integrity. With the use of EFM we described 8- of 9-stage biofilm characteristics after 78 h of growth, since the majority of microscopic fields were fully covered with attached cells. However, the 96-h growth resulted in the cell detachment and revealed 30% of dead cells of all those cells that remained on the surface. The susceptibility testing of planktonic and biofilm cells to two disinfectants, chlorine-based and quaternary ammonium compound-based, revealed that biofilm cells were more tolerant to a chlorine-based sanitiser than planktonic counterparts. P. aeruginosa was inhibited by lower concentrations of the quaternary ammonium compound-based sanitiser than the chlorine-based sanitiser, which on the other hand was more effective in cell inactivation, as both the MIC/MBC (inhibitory/bactericidal) measurement and the CFDA/PI (carboxyfluorescein diacetate/propidium iodide) staining indicated.
References:
Arnold J. W., Bailey G. W. (2000): Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: scanning electron and atomic force microscopy study. Poultry Science, 79, 1839-1845  https://doi.org/10.1093/ps/79.12.1839
 
Bagge D., Hjelm M., Johansen C., Huber I., Gram L. (2001): Shewanella putrefaciens Adhesion and Biofilm Formation on Food Processing Surfaces. Applied and Environmental Microbiology, 67, 2319-2325  https://doi.org/10.1128/AEM.67.5.2319-2325.2001
 
BJARNSHOLT THOMAS, KIRKETERP-MØLLER KLAUS, KRISTIANSEN SØREN, PHIPPS RICHARD, NIELSEN ANNE KIRSTINE, JENSEN PETER ØSTRUP, HØIBY NIELS, GIVSKOV MICHAEL (2007): Silver against Pseudomonas aeruginosa biofilms. APMIS, 115, 921-928  https://doi.org/10.1111/j.1600-0463.2007.apm_646.x
 
Cochran W. L., McFeters G. A., Stewart P. S. (2000): Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine. Journal of Applied Microbiology, 88, 22-30  https://doi.org/10.1046/j.1365-2672.2000.00825.x
 
Eginton P.J., Holah J., Allison D.G., Handley P.S., Gilbert P. (1998): Changes in the strength of attachment of micro-organisms to surfaces following treatment with disinfectants and cleansing agents. Letters in Applied Microbiology, 27, 101-105  https://doi.org/10.1046/j.1472-765X.1998.00390.x
 
Fuster-Valls Nuria, Hernández-Herrero Manuela, Marín-de-Mateo Mercedes, Rodríguez-Jerez José Juan (2008): Effect of different environmental conditions on the bacteria survival on stainless steel surfaces. Food Control, 19, 308-314  https://doi.org/10.1016/j.foodcont.2007.04.013
 
Greene Annel K., Few Brian K., Serafini Joao C. (1993): A Comparison of Ozonation and Chlorination for the Disinfection of Stainless Steel Surfaces. Journal of Dairy Science, 76, 3617-3620  https://doi.org/10.3168/jds.S0022-0302(93)77702-4
 
Hendry E. R., Worthington T., Conway B. R., Lambert P. A. (): Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. Journal of Antimicrobial Chemotherapy, 64, 1219-1225  https://doi.org/10.1093/jac/dkp362
 
Jurcisek Joseph A., Dickson Amanda C., Bruggeman Molly E., Bakaletz Lauren O. (2011): <em>In vitro</em> Biofilm Formation in an 8-well Chamber Slide. Journal of Visualized Experiments, , -  https://doi.org/10.3791/2481
 
Kim Jaeeun, Hahn Ji-Sook, Franklin Michael J., Stewart Philip S., Yoon Jeyong (2009): Tolerance of dormant and active cells in Pseudomonas aeruginosa PA01 biofilm to antimicrobial agents. Journal of Antimicrobial Chemotherapy, 63, 129-135  https://doi.org/10.1093/jac/dkn462
 
Kim J., Pitts B., Stewart P. S., Camper A., Yoon J. (): Comparison of the Antimicrobial Effects of Chlorine, Silver Ion, and Tobramycin on Biofilm. Antimicrobial Agents and Chemotherapy, 52, 1446-1453  https://doi.org/10.1128/AAC.00054-07
 
Kubota Hiromi, Senda Shouko, Nomura Nobuhiko, Tokuda Hajime, Uchiyama Hiroo (2008): Biofilm Formation by Lactic Acid Bacteria and Resistance to Environmental Stress. Journal of Bioscience and Bioengineering, 106, 381-386  https://doi.org/10.1263/jbb.106.381
 
Le Thi T.T., Prigent-Combaret C., Dorel C., Lejeune P. (2001): First stages of biofilm formation: characterization and quantification of bacterial functions involved in colonization process. Methods in Enzymology, 336: 152–159.
 
Myszka K., Białas W., Czaczyk K. (2005): The kinetics of bacterial biofilm formation on some technical materials depending on the availability of nutrients. Zywnosc Nauka Technolologia Jakosc, 3: 127–137.
 
Nosyk Oxana, ter Haseborg Eike, Metzger Ulrich, Frimmel Fritz H. (2008): A standardized pre-treatment method of biofilm flocs for fluorescence microscopic characterization. Journal of Microbiological Methods, 75, 449-456  https://doi.org/10.1016/j.mimet.2008.07.024
 
Rault Aline, Béal Catherine, Ghorbal Sarrah, Ogier Jean-Claude, Bouix Marielle (2007): Multiparametric flow cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and during frozen storage. Cryobiology, 55, 35-43  https://doi.org/10.1016/j.cryobiol.2007.04.005
 
Simoes Manuel, Carvalho Helena, Pereira Maria Olivia, Vieira Maria Joao (2003): Studies on the Behaviour of Pseudomonas fluorescens Biofilms after Ortho-phthalaldehyde Treatment. Biofouling, 19, 151-157  https://doi.org/10.1080/0892701031000072127
 
Simões Manuel, Pereira Maria Olivia, Vieira Maria João (2005): Effect of mechanical stress on biofilms challenged by different chemicals. Water Research, 39, 5142-5152  https://doi.org/10.1016/j.watres.2005.09.028
 
Simões Manuel, Simões Lúcia C., Vieira Maria J. (2010): A review of current and emergent biofilm control strategies. LWT - Food Science and Technology, 43, 573-583  https://doi.org/10.1016/j.lwt.2009.12.008
 
Simões Manuel, Simões Lúcia C., Vieira Maria J. (2009): Species association increases biofilm resistance to chemical and mechanical treatments. Water Research, 43, 229-237  https://doi.org/10.1016/j.watres.2008.10.010
 
Hunter Iain S., Smith Karen (2008): Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates. Journal of Medical Microbiology, 57, 966-973  https://doi.org/10.1099/jmm.0.47668-0
 
Stewart Philip S, William Costerton J (2001): Antibiotic resistance of bacteria in biofilms. The Lancet, 358, 135-138  https://doi.org/10.1016/S0140-6736(01)05321-1
 
Surdeau N., Laurent-Maquin D., Bouthors S., Gellé M.P. (2006): Sensitivity of bacterial biofilms and planktonic cells to a new antimicrobial agent, Oxsil® 320N. Journal of Hospital Infection, 62, 487-493  https://doi.org/10.1016/j.jhin.2005.09.003
 
Takenaka Shoji, Iwaku Masaaki, Hoshino Etsuro (2001): Artificial Pseudomonas aeruginosa biofilms and confocal laser scanning microscopic analysis. Journal of Infection and Chemotherapy, 7, 87-93  https://doi.org/10.1007/s101560100014
 
TAKEUCHI KAZUE, FRANK JOSEPH F. (2000): Penetration of Escherichia coli O157:H7 into Lettuce Tissues as Affected by Inoculum Size and Temperature and the Effect of Chlorine Treatment on Cell Viability. Journal of Food Protection, 63, 434-440  https://doi.org/10.4315/0362-028X-63.4.434
 
TAKEUCHI KAZUE, FRANK JOSEPH F. (2001): Expression of Red-Shifted Green Fluorescent Protein by Escherichia coli O157:H7 as a Marker for the Detection of Cells on Fresh Produce. Journal of Food Protection, 64, 298-304  https://doi.org/10.4315/0362-028X-64.3.298
 
TAKEUCHI KAZUE, MATUTE CLAUDIA M., HASSAN ASHRAF N., FRANK JOSEPH F. (2000): Comparison of the Attachment of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas fluorescens to Lettuce Leaves. Journal of Food Protection, 63, 1433-1437  https://doi.org/10.4315/0362-028X-63.10.1433
 
Tote K., Horemans T., Berghe D. V., Maes L., Cos P. (): Inhibitory Effect of Biocides on the Viable Masses and Matrices of Staphylococcus aureus and Pseudomonas aeruginosa Biofilms. Applied and Environmental Microbiology, 76, 3135-3142  https://doi.org/10.1128/AEM.02095-09
 
Tsuneda Satoshi, Aikawa Hirotoshi, Hayashi Hiroshi, Yuasa Atsushi, Hirata Akira (2003): Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiology Letters, 223, 287-292  https://doi.org/10.1016/S0378-1097(03)00399-9
 
Whitchurch C. B. (): Extracellular DNA Required for Bacterial Biofilm Formation. Science, 295, 1487-1487  https://doi.org/10.1126/science.295.5559.1487
 
Wirtanen G, Salo S, Helander I.M, Mattila-Sandholm T (2001): Microbiological methods for testing disinfectant efficiency on Pseudomonas biofilm. Colloids and Surfaces B: Biointerfaces, 20, 37-50  https://doi.org/10.1016/S0927-7765(00)00173-9
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti