Effect of fungicide treatment on Fusarium culmorum and Tri genes transcription in barley malt

https://doi.org/10.17221/541/2014-CJFSCitation:Pavel J., Vaculová K., Faltusová Z., Kučera L., Sedláčková I., Tvarůžek L., Ovesná J. (2015): Effect of fungicide treatment on Fusarium culmorum and Tri genes transcription in barley malt. Czech J. Food Sci., 33: 326-333.
download PDF
Malting barley grains are essential components in the beer production. Fusarium infection can have severe effects on malt and beer, because it may inhibit the enzymatic activity in malt and may induce the occurrence of gushing and changes in the colour and flavour of the finished beer. We examined the growth of the filamentous fungi Fusarium culmorum in artificially infected and non-infected barley malting grains during the first steps of the malting process and under the effects of fungicide pretreatment (Hutton and Prosaro 250 EC) of barley plants. Our study focused on the fungi growth in two distinct barley malting cultivars Bojos and Malz. Fusarium growth was investigated by quantitative real-time PCR using TagMan MGB probes. Furthermore, we focused on the Tri5 and Tri6 genes because they play the most important roles in trichothecene biosynthesis. Surprisingly, the higher transcription activity of the Tri genes was found in the fungicide-treated cultivar Malz as compared with untreated cultivars.
Beccari G., Covarelli L., Nicholson P. (2011): Infection processes and soft wheat response to root rot and crown rot caused by Fusarium culmorum. Plant Pathology, 60, 671-684  https://doi.org/10.1111/j.1365-3059.2011.02425.x
Bolechová Martina, Benešová Karolína, Běláková Sylvie, Čáslavský Josef, Pospíchalová Markéta, Mikulíková Renata (2015): Determination of seventeen mycotoxins in barley and malt in the Czech Republic. Food Control, 47, 108-113  https://doi.org/10.1016/j.foodcont.2014.06.045
Creppy Edmond E (2002): Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicology Letters, 127, 19-28  https://doi.org/10.1016/S0378-4274(01)00479-9
Doohan F.M., Weston G., Rezanoor H.N., Parry D.W., Nicholson P. (1999): Development and use of reverse transcription-PCR assay to study expression of Tri5 by Fusarium species in vitro and in planta. Applied and Environmental Microbiology, 65: 3850–3854.
Fan Jieru, Urban Martin, Parker Josie E., Brewer Helen C., Kelly Steven L., Hammond-Kosack Kim E., Fraaije Bart A., Liu Xili, Cools Hans J. (2013): Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function. New Phytologist, 198, 821-835  https://doi.org/10.1111/nph.12193
Faulkner Christine, Robatzek Silke (2012): Plants and pathogens: putting infection strategies and defence mechanisms on the map. Current Opinion in Plant Biology, 15, 699-707  https://doi.org/10.1016/j.pbi.2012.08.009
Garda-Buffon Jaqueline, Baraj Edlira, Badiale-Furlong Eliana (2010): Effect of deoxynivalenol and T-2 toxin in malt amylase activity. Brazilian Archives of Biology and Technology, 53, 505-511  https://doi.org/10.1590/S1516-89132010000300002
Gardiner Stephanie A., Boddu Jayanand, Berthiller Franz, Hametner Christian, Stupar Robert M., Adam Gerhard, Muehlbauer Gary J. (2010): Transcriptome Analysis of the Barley–Deoxynivalenol Interaction: Evidence for a Role of Glutathione in Deoxynivalenol Detoxification. Molecular Plant-Microbe Interactions, 23, 962-976  https://doi.org/10.1094/MPMI-23-7-0962
Gaurilčikienė I., Butkutė B., Mankevičienė A., Paplauskienė V. (2010): A multi-aspect comparative investigation on the use of strobilurin and triazole-based fungicides for winter wheat disease control. In: Carisse O. (ed.): Fungicides. Rijeka, InTech – Open Access Publisher: 69–94,
Havránková H., Pazlarová J., Ovesná J. (2011): Genetic determinants of mycotoxin synthesis in genus Fusarium. Czech Journal of Food Sciences, 29: 86–92.
Homdork S., Fehrmann H., Beck R. (2000): Effects of Field Application of Tebuconazole on Yield, Yield Components and the Mycotoxin Content of Fusarium-infected Wheat Grain. Journal of Phytopathology, 148, 1-6  https://doi.org/10.1111/j.1439-0434.2000.tb04617.x
Ioos R., Belhadj A., Menez M., Faure A. (2005): The effects of fungicides on Fusarium spp. and Microdochium nivale and their associated trichothecene mycotoxins in French naturally-infected cereal grains. Crop Protection, 24, 894-902  https://doi.org/10.1016/j.cropro.2005.01.014
Khattak Waleed Ahmad, Kang Minkyung, Ul-Islam Mazhar, Park Joong Kon (2013): Partial purification of saccharifying and cell wall-hydrolyzing enzymes from malt in waste from beer fermentation broth. Bioprocess and Biosystems Engineering, 36, 737-747  https://doi.org/10.1007/s00449-013-0899-1
KIMURA Makoto, SHINGU Yoshinori, YONEYAMA Katsuyoshi, YAMAGUCHI Isamu (): Features of Tri101 , the Trichothecene 3- O -Acetyltransferase Gene, Related to the Self-defense Mechanism in Fusarium graminearum. Bioscience, Biotechnology and Biochemistry, 62, 1033-1036  https://doi.org/10.1271/bbb.62.1033
Kimura Makoto, Tokai Takeshi, O’Donnell Kerry, Ward Todd J, Fujimura Makoto, Hamamoto Hiroshi, Shibata Takehiko, Yamaguchi Isamu (2003): The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Letters, 539, 105-110  https://doi.org/10.1016/S0014-5793(03)00208-4
Kmoch M., Safrankova I., Malachova A., Smutna P., Janeckova L., Ehrenbergerova J., Vaculova K., Cerkal R. (2012): Efficiency of various fungicide treatments on the occurrence of Fusarium spp. associated with spring barley (Hordeum vulgare L.) grains. In: Pavelkova D., Strouhal J., Pasekova M. (eds): Advances in Environment, Biotechnology and Biomedicine. 1. Ed. Tomas Bata University in Zlin, WSEAS Press: 240–245.
Leišová L., Kučera L., Chrpová J., Sýkorová S., Šíp V., Ovesná J. (2006): Quantification of Fusarium culmorum in Wheat and Barley Tissues Using Real-Time PCR in Comparison with DON Content. Journal of Phytopathology, 154, 603-611  https://doi.org/10.1111/j.1439-0434.2006.01154.x
MAIER FRANK J., MIEDANER THOMAS, HADELER BIRGIT, FELK ANGELIKA, SALOMON SIEGFRIED, LEMMENS MARC, KASSNER HELMUT, SCHÄFER WILHELM (2006): Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Molecular Plant Pathology, 7, 449-461  https://doi.org/10.1111/j.1364-3703.2006.00351.x
Matusinsky P., Polišenská I., Kadlíková M., Tvarůžek L., Spitzerová D., Spitzer T. (2013): Dynamics of T-2 toxin synthesis on barley ears. Food, Agriculture and Environment, 11: 1114–1122.
Mauler-Machnik A., Zahn K. (1994): Ährenfusariosen an Weizen – neue Erkenntnisse zur Epidemiologie und zur Bekämpfung mit Folicur® (Tebuconazole). Pflanzenschutz-Nachrichten Bayer, 47: 133–160.
Menke Jon, Weber Jakob, Broz Karen, Kistler H. Corby, Yun Sung-Hwan (2013): Cellular Development Associated with Induced Mycotoxin Synthesis in the Filamentous Fungus Fusarium graminearum. PLoS ONE, 8, e63077-  https://doi.org/10.1371/journal.pone.0063077
Mesterházy Á., Bartók T., Lamper C. (2003): Influence of Wheat Cultivar, Species of Fusarium , and Isolate Aggressiveness on the Efficacy of Fungicides for Control of Fusarium Head Blight. Plant Disease, 87, 1107-1115  https://doi.org/10.1094/PDIS.2003.87.9.1107
Nařízení komise (ES) č. 401/2006 ze dne 23. února 2006, kterým se stanoví metody odběru vzorků a metody analýzy pro úřední kontrolu množství mykotoxinů v potravinách. Úřední věstník EU, L 70/12, 9.3.2006, s. 30. Available at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:070:0012:0034:CS:PDF
Nicolaisen Mogens, Supronienė Skaidrė, Nielsen Linda Kærgaard, Lazzaro Irene, Spliid Niels Henrik, Justesen Annemarie Fejer (2009): Real-time PCR for quantification of eleven individual Fusarium species in cereals. Journal of Microbiological Methods, 76, 234-240  https://doi.org/10.1016/j.mimet.2008.10.016
Oliveira P. (2012): Impact of Fusarium culmorum infection on barley malt protein fractions, brewing process, and beer quality. In: Proceedings 2012 World Brewing Congress, July 28–Aug 1, 2012, Portland, USA. Available at http://www.mbaa.com/meetings/archive/2012/Proceedings/pages/61.aspx
Oliveira Pedro M., Waters Deborah M., Arendt Elke K. (2013): The impact of Fusarium culmorum infection on the protein fractions of raw barley and malted grains. Applied Microbiology and Biotechnology, 97, 2053-2065  https://doi.org/10.1007/s00253-013-4696-1
Pfaffl M. W. (): A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, 45e-45  https://doi.org/10.1093/nar/29.9.e45
Phenological Growth Stages and BBCH-identification Keys of Cereals (1997): In: Meier U. (ed.): Growth Stages of Mono- and Dicotyledonous Plants. BBCH-Monograph. Berlin, Wien, Blackwell Wissenschafts Verlag: 12–16.
Rajčáková L. (2006): Riziká kontaminácie krmív fuzáriovými toxínmi. Naše pole, 10: 21–22.
Scherm Barbara, Balmas Virgilio, Spanu Francesca, Pani Giovanna, Delogu Giovanna, Pasquali Matias, Migheli Quirico (2013): Fusarium culmorum : causal agent of foot and root rot and head blight on wheat. Molecular Plant Pathology, 14, 323-341  https://doi.org/10.1111/mpp.12011
Seong Kye-Yong, Pasquali Matias, Zhou Xiaoying, Song Jongwoo, Hilburn Karen, McCormick Susan, Dong Yanhong, Xu Jin-Rong, Kistler H. Corby (2009): Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Molecular Microbiology, 72, 354-367  https://doi.org/10.1111/j.1365-2958.2009.06649.x
Tvarůžek L., Matušinsky P., Vyšohlídová M. (2012): Metodika pro zakládání a hodnocení pokusů s umělou inokulací obilnin fuzáriózami klasů. Kroměříž, Agrotest fyto, s.r.o..
Vegi Anuradha, Schwarz Paul, Wolf-Hall Charlene E. (2011): Quantification of Tri5 gene, expression, and deoxynivalenol production during the malting of barley. International Journal of Food Microbiology, 150, 150-156  https://doi.org/10.1016/j.ijfoodmicro.2011.07.032
Wolf-Hall Charlene E. (2007): Mold and mycotoxin problems encountered during malting and brewing. International Journal of Food Microbiology, 119, 89-94  https://doi.org/10.1016/j.ijfoodmicro.2007.07.030
download PDF

© 2020 Czech Academy of Agricultural Sciences