Chromatographic separation of mannitol from mixtures of other carbohydrates in aqueous solutions

Gillarová S., Henke S., Svoboda T., Kadlec P., Hinková A., Bubník Z., Pour V., Sluková M. (2021): Chromatographic separation of mannitol from mixtures of other carbohydrates in aqueous solutions. Czech J. Food Sci., 39: 281–288.

download PDF

The isolation of mannitol from natural sources, e.g. from plant extracts or broths, requires considerable time and effort. The separation of mannitol from aqueous solutions containing also glucose, fructose, and sucrose was tested using discontinuous preparative anion- and cation-exchange chromatography. The suitability of the application in the separation of carbohydrates and especially mannitol was tested under various conditions and using three different types of ion-exchangers. The effect of sorbent regeneration and modification on the separation was also examined using different concentrations and volumes of chemical agents. The fractions collected after the discontinuous chromatography were analysed on the content of mannitol by the high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) method. The successful isolation of pure mannitol fraction, using water as a mobile phase and a combination of sodium chloride and hydroxide for sorbent regeneration, was achieved only on anion-exchange chromatography.

Anko M., Bjelošević M., Planinšek O., Trstenjak U., Logar M., Ahlin Grabnar P., Brus B. (2019): The formation and effect of mannitol hemihydrate on the stability of monoclonal antibody in the lyophilized state. International Journal of Pharmaceutics, 564: 106–116.
Bhatt S.M., Mohan A., Srivastava S.K. (2013): Challenges in enzymatic route of mannitol production. ISRN Biotechnology, 2013: 1–13.
Dai Y., Meng Q., Mu W., Zhang T. (2017): Recent advances in the applications and biotechnological production of mannitol. Journal of Functional Foods, 36: 404–409.
Eggleston G. (2010): Analysis of manitol, as tracer of bacterial infections in cane and beet sugar factories (Analýza manitolu ako indikátora bakteriálnej infekcie v trstinových a repných cukrovaroch). Listy cukrovarnické a řepařské, 126: 66–72. (in Slovak)
Ghoreishi S.M., Shahrestani R.G. (2009): Subcritical water extraction of mannitol from olive leaves. Journal of Food Engineering, 93: 474–481.
Glykys J., Duquette E., Rahmati N., Duquette K., Staley K.J. (2019): Mannitol decreases neocortical epileptiform activity during early brain development via cotransport of chloride and water. Neurobiology of Disease, 125: 163–175.
Hendriksen H.V., Mathiasen T.E., Adler-Nissen J., Frisvad J.C., Emborg C. (1988): Production of mannitol by Penicillium strains. Journal of Chemical Technology & Biotechnology, 43: 223–228.
Horn J., Schanda J., Friess W. (2018): Impact of fast and conservative freeze-drying on product quality of protein-mannitol-sucrose-glycerol lyophilizates. European Journal of Pharmaceutics and Biopharmaceutics, 127: 342–354.
Johnson R.E., Kirchhoff C.F., Gaud H.T. (2002): Mannitol-sucrose mixtures – Versatile formulations for protein lyophilization. Journal of Pharmaceutical Sciences, 91: 914–922.
Khan A., Bhide A., Gadre R. (2009): Mannitol production from glycerol by resting cells of Candida magnoliae. Bioresource Technology, 100: 4911–4913.
Kulkarni S.S., Suryanarayanan R., Rinella J.V., Bogner R.H. (2018): Mechanisms by which crystalline mannitol improves the reconstitution time of high concentration lyophilized protein formulations. European Journal of Pharmaceutics and Biopharmaceutics, 131: 70–81.
Lama-Muñoz A., Contreras M.d.M., Espínola F., Moya M., Romero I., Castro E. (2020): Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chemistry, 320: 126626.
Maria G. (2020): Model-based optimisation of a batch reactor with a coupled bi-enzymatic process for mannitol production. Computers & Chemical Engineering, 133: 106628.
Narayan S.W., Castelino R., Hammond N., Patanwala A.E. (2020): Effect of mannitol plus hypertonic saline combination versus hypertonic saline monotherapy on acute kidney injury after traumatic brain injury. Journal of Critical Care, 57: 220–224.
Nurmi H.M., Lätti A.M., Brannan J.D., Koskela H.O. (2019): Comparison of mannitol and citric acid cough provocation tests. Respiratory Medicine, 158: 14–20.
Patil H., Gupta R. (2019): A comparative study of bolus dose of hypertonic saline, mannitol, and mannitol plus glycerol combination in patients with severe traumatic brain injury. World Neurosurgery, 125: e221–e228.
Racine F.M., Saha B.C. (2007): Production of mannitol by Lactobacillus intermedius NRRL B-3693 in fed-batch and continuous cell-recycle fermentations. Process Biochemistry, 42: 1609–1613.
Rupérez P., Toledano G. (2003): Celery by-products as a source of mannitol. European Food Research and Technology, 216: 224–226.
Saha B.C., Racine F.M. (2011): Biotechnological production of mannitol and its applications. Applied Microbiology and Biotechnology, 89: 879–891.
Saska M., Chen F. (2002): Process for the separation of sugars. U.S. Patent No. US6451123B1.
Sun S., Li Y., Zhang H., Wang X., She L., Yan Z., Lu G. (2019): The effect of mannitol in the early stage of supratentorial hypertensive intracerebral hemorrhage: A systematic review and meta-analysis. World Neurosurgery, 124: 386–396.
von Weymarn F.N.W., Kiviharju K.J., Jääskeläinen S.T., Leisola M.S.A. (2003): Scale-up of a new bacterial mannitol production process. Biotechnology Progress, 19: 815–821.
von Weymarn N., Hujanen M., Leisola M. (2002): Production of D-mannitol by heterofermentative lactic acid bacteria. Process Biochemistry, 37: 1207–1213.
Wisselink H.W., Weusthuis R.A., Eggink G., Hugenholtz J., Grobben G.J. (2002): Mannitol production by lactic acid bacteria: A review. International Dairy Journal, 12: 151–161.
Yoshikawa J., Habe H., Morita T., Fukuoka T., Imura T., Iwabuchi H., Uemura S., Tamura T., Kitamoto D. (2014): Production of mannitol from raw glycerol by Candida azyma. Journal of Bioscience and Bioengineering, 117: 725–729.
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti