Use of rheological plastic models to describe the flow behaviour of unconventional chocolate masses

https://doi.org/10.17221/57/2022-CJFSCitation:

Kouřilová V., Dufková R., Hřivna L., Kumbár V. (2022): Use of rheological plastic models to describe the flow behaviour of unconventional chocolate masses. Czech J. Food Sci., 40: 305–312.

download PDF

The chocolate mass behaves like a typical non-Newtonian plastic liquid defined by the yield stress and the plastic shear stress. The rotary rheometer with a cone-plate spindle system was chosen to determine the flow properties of chocolate masses. The effect of shear stress on shear deformation rates was measured at a temperature of 40 °C in an ascending mode from 1 s–1 to 500 s–1 for chocolate samples [white chocolate (WC), ruby chocolate (RC), and caramelised Amber chocolate (AC)]. Plastic models, according to Casson, Bingham and Herschel-Bulkley, were used for the mathematical description of this dependence. The Herschel-Bulkley model was evaluated as the most suitable mathematical model for describing the flow behaviour of unconventional chocolate masses. The Herschel-Bulkley model was chosen based on a high value of the coefficient of determination R2 and a low value of the sum of the square error estimate (SSE). The non-Newtonian plastic behaviour was confirmed, and the yield stress was determined for all types of tested chocolate masses.

References:
Aeschlimann J.M., Beckett S.T. (2000): International inter-laboratory trials to determine the factors affecting the measurement of chocolate viscosity. Journal of Texture Studies, 31: 541–576. https://doi.org/10.1111/j.1745-4603.2000.tb01019.x
 
Afoakwa E.O. (2010): Chocolate Science and Technology. Chichester, United Kingdom, Wiley-Blackwell: 258.
 
Afoakwa E.O., Paterson A., Fowler M., Vieira J. (2009): Comparison of rheological models for determining dark chocolate viscosity. International Journal of Food Science and Technology, 44: 162–167. https://doi.org/10.1111/j.1365-2621.2008.01710.x
 
Ardakani H.A., Mitsoulis E., Hatzikiriakos S.G. (2014): Capillary flow of milk chocolate. Journal of Non-Newtonian Fluid Mechanics, 210: 56–65. https://doi.org/10.1016/j.jnnfm.2014.06.001
 
Aydin N., Kyan-Pour N., Toker O.S. (2021): Caramelized white chocolate: Effects of production process on quality parameters. Journal of Food Measurement and Characterisation, 15: 3182–3194. https://doi.org/10.1007/s11694-021-00890-1
 
Bair S.S., McCabe C. (2007): High-Pressure Rheology for Quantitative Elastohydrodynamics. 1st Ed. Amsterdam, the Netherlands, Elsevier: 260.
 
Bergemann N., Heil M., Smith B., Juel A. (2018): From elastic deformation to flow in tempered chocolate. Journal of Rheology, 62: 1–21. https://doi.org/10.1122/1.5038253
 
Briggs J.L., Wang T. (2004): Influence of shearing and time on the rheological properties of milk chocolate during tempering. Journal of the American Oil Chemists' Society, 81: 117–121. https://doi.org/10.1007/s11746-004-0868-9
 
Burke R., Kelly A.L., Lavelle Ch., This von Kientza H. (2021): Handbook of Molecular Gastronomy: Scientific Foundations, Educational Practices, and Culinary Applications. 1st Ed. New York, US, CRC Press: 894.
 
Cahyani A., Kurniasari J., Nafingah R., Rahayoe S., Harmayani E., Saputro A.D. (2019): Determining Casson yield value, Casson viscosity and thixotropy of molten chocolate using viscometer. In: IOP Conference Series: Earth and Environmental Science, South Sulawesi, Indonesia, Aug 6–8, 2019: 1–8.
 
Coady Ch. (2000): Chocolate Companion: A Connoisseur's Guide to the World's Finest Chocolates (Čokoláda: Průvodce znalce světem nejjemnějších čokoládových cukrovinek). 1st Ed. Prague, Czech Republic, Fortuna Print: 192. (in Czech)
 
da Silva Lannes S.C., Medeiros M.L. (2008): Rheological properties of chocolate drink from cupuassu. International Journal of Food Engineering, 4: 1–10.
 
de Graef V., Depypere F., Minnaert M., Dewettinck K. (2011): Chocolate yield stress as measured by oscillatory rheology. Food Research International, 44: 2660–2665. https://doi.org/10.1016/j.foodres.2011.05.009
 
de Jesus Silva G., Gonçalves B.H.R.F., de Jesus D.C., Vidigal M.C.T.R., Minim L.A., Ferreira S.O., Bonomo R.C.F., Ferrão S.P.B. (2019): Study of the structural properties of goat's milk chocolates with different concentrations of cocoa mass. Journal of Texture Studies, 50: 547–555. https://doi.org/10.1111/jtxs.12463
 
Fernandes V.A., Müller A.J., Sandoval A.J. (2013): Thermal, structural and rheological characteristics of dark chocolate with different compositions. Journal of Food Engineering, 116: 97–108. https://doi.org/10.1016/j.jfoodeng.2012.12.002
 
Glicerina V., Balestra F., Rosa M.D., Romani S. (2016): Microstructural and rheological characteristics of dark, milk and white chocolate: A comparative study. Journal of Food Engineering, 169: 165–171. https://doi.org/10.1016/j.jfoodeng.2015.08.011
 
Hinneh M., Van de Walle D., Haeck J., Abotsi E.E., De Winne A., Saputro A.D., Messens K., Van Durme J., Afoakwa E.O., De Cooman L., Dewettinck K. (2019): Applicability of the melanger for chocolate refining and Stephan mixer for conching as small-scale alternative chocolate production techniques. Journal of Food Engineering, 253: 59–71. https://doi.org/10.1016/j.jfoodeng.2019.02.016
 
Kroh L.W. (1994): Caramelisation in food and beverages. Food Chemistry, 51: 373–379. https://doi.org/10.1016/0308-8146(94)90188-0
 
Kumbár V., Kouřilová V., Dufková R., Votava J., Hřivna L. (2021): Rheological and pipe flow properties of chocolate masses at different temperatures. Foods, 10: 2519. https://doi.org/10.3390/foods10112519
 
Kumbár V., Polcar A., Votava J. (2015): Physical and mechanical properties of bioethanol and gasoline blends. Listy Cukrovarnicke a Reparske, 131: 112–116.
 
Lannes S.C.S., Medeiros M.L., Gioielli L.A. (2004): Rheological properties of cupuassu and cocoa fats. Grasas y Aceites, 55: 115–121. https://doi.org/10.3989/gya.2004.v55.i2.154
 
Lucisano M., Casiraghi E., Mariotti M. (2006): Influence of formulation and processing variables on ball mill refining of milk chocolate. European Food Research Technology, 223: 797–802. https://doi.org/10.1007/s00217-006-0272-6
 
Montoya C.C., Valencia W.G., Sierra J.A., Penagos L. (2021): Enhanced pink-red hues in processed powders from unfermented cacao beans. LWT – Food Science and Technology, 138: 1–7. https://doi.org/10.1016/j.lwt.2020.110671
 
Šeremet D., Mandura A., Vojvodic Cebin A., Oskomic M., Champion E., Martinic A., Komes D. (2019): Ruby chocolate – Bioactive potential and sensory quality characteristics compared with dark, milk and white chocolate. Food in Health and Disease: Scientific-Professional Journal of Nutrition and Dietetics, 8: 89–96.
 
Servais C., Ranc H., Roberts I.D. (2007): Determination of chocolate viscosity. Journal of Texture Studies, 34: 467–497. https://doi.org/10.1111/j.1745-4603.2003.tb01077.x
 
Singh R.P., Heldman D.R. (2014): Fluid flow in food processing. In: Singh R.P., Heldman D.R. (eds.): Introduction to Food Engineering. 5th Ed. Cambridge, US, Academic Press: 65–209.
 
Sulaiman K.B., Yang T.A. (2015): Color characteristics of dried cocoa using shallow box fermentation technique. International Scholarly and Scientific Research & Innovation, 9: 1281–1285.
 
Taylor J.E., Van Damme I., Johns M.L., Routh A.F., Wilson D.I. (2009): Shear rheology of molten crumb chocolate. Journal of Food Science, 74: 55–61. https://doi.org/10.1111/j.1750-3841.2008.01041.x
 
Trost D., Polcar A., Boldor D., Nde D.B., Wolak A., Kumbár V. (2021): Temperature dependence of density and viscosity of biobutanol-gasoline blends. Applied Sciences, 11: 3172. https://doi.org/10.3390/app11073172
 
Vásquez Ch., Henríquez G., López J.V., Penott-Chang E.K., Sandovala A.J., Müller A.J. (2019): The effect of composition on the rheological behavior of commercial chocolates. LWT – Food Science and Technology, 111: 744–750. https://doi.org/10.1016/j.lwt.2019.05.101
 
Zzaman W., Issara U., Febrianto N.F., Yang T.A. (2014): Fatty acid composition, rheological properties and crystal formation of rambutan fat and cocoa butter. International Food Research Journal, 21: 983–987.
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti