Optimisation of ultrasound-assisted extraction of protein from Spirulina platensis using RSM

https://doi.org/10.17221/64/2017-CJFSCitation:Yucetepe A., Saroglu O., Daskaya-Dikmen C., Bildik F., Ozcelik B. (2018): Optimisation of ultrasound-assisted extraction of protein from Spirulina platensis using RSM. Czech J. Food Sci., 36: 98-108.
download PDF
The protein extraction from the blue-green microalgae Spirulina platensis was carried out using ultrasound-assisted extraction and response surface methodology (RSM) was used to optimise extraction conditions. Extraction yield, total phenolic content, antioxidant activity and in vitro protein digestibility of protein extracts were determined. A three factors Box-Behnken design (BBD) of experiments was employed at pH values of 7, 8 and 9; temperatures of 25, 35, and 45°C; and for durations of 60, 90 and 120 minutes. Based on the RSM analysis, optimum extraction conditions (temperature 45°C, pH 7.46 and time 120 min) were obtained for extraction yield (29.05%), total phenolic content (3.52 mg caffeic acid equivalent/g dw), antioxidant activity (11.32 mg Trolox equivalent/g dw) and in vitro protein digestibility (99.36%). We report the first evaluation of the in vitro protein digestibility of Spirulina platensis and find it to be over 90%. This value is higher than the in vitro protein digestibility values of proteins obtained from other algae and plant species, and, in particular, is greater than that of commercial soybean protein isolate.
References:
Agustini Tri Winarni, Suzery Meiny, Sutrisnanto Danny, Ma’ruf Widodo Farid, Hadiyanto (2015): Comparative Study of Bioactive Substances Extracted from Fresh and Dried Spirulina sp.. Procedia Environmental Sciences, 23, 282-289 https://doi.org/10.1016/j.proenv.2015.01.042
 
Apak Reşat, Güçlü Kubilay, Özyürek Mustafa, Karademir Saliha Esin (2004): Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine:  CUPRAC Method. Journal of Agricultural and Food Chemistry, 52, 7970-7981 https://doi.org/10.1021/jf048741x
 
Benelhadj Sonda, Gharsallaoui Adem, Degraeve Pascal, Attia Hamadi, Ghorbel Dorra (2016): Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chemistry, 194, 1056-1063 https://doi.org/10.1016/j.foodchem.2015.08.133
 
Bermejo Paloma, Piñero Enrique, Villar Ángel Mª (2008): Iron-chelating ability and antioxidant properties of phycocyanin isolated from a protean extract of Spirulinaplatensis. Food Chemistry, 110, 436-445 https://doi.org/10.1016/j.foodchem.2008.02.021
 
Bradford Marion M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
 
Chaiklahan R., Chirasuwana N., Lohab V., Bunnag B. (2008): Lipid and fatty acids extraction from the cyanobacterium Spirulina. ScienceAsia, 34: 299–305.https://doi.org/10.2306/scienceasia1513-1874.2008.34.299
 
Chaiklahan R., Chirasuwan N., Triratana P., Loha V., Tia S., Bunnag B. (2013). Polysaccharide extraction from Spirulina sp. and its antioxidant capacity. International Journal of Biological Macromolecules, 58: 73–78.
 
El Shimi H.I., Attia N.K., Abdel Allah A.A., El Sheltawy S.T., El Diwani G.I. (2015): Quality profile of Spirulina platensis oilgae extraction for biodiesel production. Biotechnology, 5: 16–21.
 
Piñero Estrada J (): Antioxidant activity of different fractions of Spirulina platensis protean extract. Il Farmaco, 56, 497-500 https://doi.org/10.1016/S0014-827X(01)01084-9
 
Gad Ahmed S., Khadrawy Yasser A., El-Nekeety Aziza A., Mohamed Sherif R., Hassan Nabila S., Abdel-Wahhab Mosaad A. (2011): Antioxidant activity and hepatoprotective effects of whey protein and Spirulina in rats. Nutrition, 27, 582-589 https://doi.org/10.1016/j.nut.2010.04.002
 
Hadiyanto Hady, Suttrisnorhadi Suttrisnorhadi (2016): Response Surface Optimization of Ultrasound Assisted Extraction (UAE) of Phycocyanin from Microalgae Spirulina platensis. Emirates Journal of Food and Agriculture, 28, 227- https://doi.org/10.9755/ejfa.2015-05-193
 
Najdi Hejazi Sara, Orsat Valérie, Azadi Behnam, Kubow Stan (2016): Improvement of the in vitro protein digestibility of amaranth grain through optimization of the malting process. Journal of Cereal Science, 68, 59-65 https://doi.org/10.1016/j.jcs.2015.11.007
 
Herrero Miguel, Vicente María J., Cifuentes Alejandro, Ibáñez Elena (2007): Characterization by high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry of the lipid fraction ofSpirulina platensis pressurized ethanol extract. Rapid Communications in Mass Spectrometry, 21, 1729-1738 https://doi.org/10.1002/rcm.3017
 
Jouki Mohammad, Mortazavi Seyed Ali, Yazdi Farideh Tabatabaei, Koocheki Arash (2014): Optimization of extraction, antioxidant activity and functional properties of quince seed mucilage by RSM. International Journal of Biological Macromolecules, 66, 113-124 https://doi.org/10.1016/j.ijbiomac.2014.02.026
 
Karadag Ayse, Ozcelik Beraat, Saner Samim (2009): Review of Methods to Determine Antioxidant Capacities. Food Analytical Methods, 2, 41-60 https://doi.org/10.1007/s12161-008-9067-7
 
Krienitz Lothar, Wirth Manfred (2006): The high content of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology. Limnologica - Ecology and Management of Inland Waters, 36, 204-210 https://doi.org/10.1016/j.limno.2006.05.002
 
Kumaran A., Joel karunakaran R. (2006): Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97, 109-114 https://doi.org/10.1016/j.foodchem.2005.03.032
 
Ling A.L.M. (2014): Antioxidant activity, total phenolic and flavonoid contents of selected commercial seaweeds of Sabah, Malaysia. International Journal of Pharmaceutical and Phytopharmacological Research, 3: 234–238.
 
LV Chenyan, JIA Xiaoling, LI Meiliang, YANG Jingyun, ZHAO Guanghua (2011): Optimization of Extraction Process of Crude Protein from Grape Seeds by RSM. Food Science and Technology Research, 17, 437-445 https://doi.org/10.3136/fstr.17.437
 
Madkour Fedekar Fadel, Kamil Abd El-Wahab, Nasr Hoda Shafik (2012): Production and nutritive value of Spirulina platensis in reduced cost media. The Egyptian Journal of Aquatic Research, 38, 51-57 https://doi.org/10.1016/j.ejar.2012.09.003
 
Majdoub Hatem, Mansour Mohamed Ben, Chaubet Frédéric, Roudesli Mohamed S., Maaroufi Raoui M. (2009): Anticoagulant activity of a sulfated polysaccharide from the green alga Arthrospira platensis. Biochimica et Biophysica Acta (BBA) - General Subjects, 1790, 1377-1381 https://doi.org/10.1016/j.bbagen.2009.07.013
 
Pagnussatt Fernanda Arnhold, Del Ponte Emerson Medeiros, Garda-Buffon Jaqueline, Badiale-Furlong Eliana (2014): Inhibition of Fusarium graminearum growth and mycotoxin production by phenolic extract from Spirulina sp.. Pesticide Biochemistry and Physiology, 108, 21-26 https://doi.org/10.1016/j.pestbp.2013.11.002
 
Rafiiqul I.M., Jalal K.C.A, Alam M.Z. (2005): Environmental factors for optimisation of spirulina biomass in laboratory culture. Journal of Biotechnology, 4: 19–22.
 
Sarada R, Pillai Manoj G, Ravishankar G.A (1999): Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry, 34, 795-801 https://doi.org/10.1016/S0032-9592(98)00153-8
 
Seo Yong, Choi Woo, Park Jong, Park Jin, Jung Kyung-Hwan, Lee Hyeon (2013): Stable Isolation of Phycocyanin from Spirulina platensis Associated with High-Pressure Extraction Process. International Journal of Molecular Sciences, 14, 1778-1787 https://doi.org/10.3390/ijms14011778
 
Souza Michele Moraes de, Prietto Luciana, Ribeiro Anelise Christ, Souza Taiana Denardi de, Badiale-Furlong Eliana (2011): Assessment of the antifungal activity of Spirulina platensis phenolic extract against Aspergillus flavus. Ciência e Agrotecnologia, 35, 1050-1058 https://doi.org/10.1590/S1413-70542011000600003
 
Świeca Michał, Gawlik-Dziki Urszula, Dziki Dariusz, Baraniak Barbara, Czyż Jarosław (2013): The influence of protein–flavonoid interactions on protein digestibility in vitro and the antioxidant quality of breads enriched with onion skin. Food Chemistry, 141, 451-458 https://doi.org/10.1016/j.foodchem.2013.03.048
 
Stone Andrea K., Karalash Anna, Tyler Robert T., Warkentin Thomas D., Nickerson Michael T. (2015): Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Research International, 76, 31-38 https://doi.org/10.1016/j.foodres.2014.11.017
 
Tang (2011): Vitamin A, Nutrition, and Health Values of Algae: Spirulina, Chlorella, and Dunaliella. Journal of Pharmacy and Nutrition Sciences, 1, - https://doi.org/10.6000/1927-5951.2011.01.02.04
 
Thoo Yin Yin, Ho Swee Kheng, Liang Jia Yun, Ho Chun Wai, Tan Chin Ping (2010): Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (Morinda citrifolia). Food Chemistry, 120, 290-295 https://doi.org/10.1016/j.foodchem.2009.09.064
 
Vo T.-S., Ngo D.-H., Kim S.-K. (2016): Nutritional and pharmaceutical properties of microalgal Spirulina. In: Se-Kwon K. (ed.): Handbook of Marine Microalgae. London, Academic Press: 299–308.
 
Wong K.H., Cheung Peter C.K. (2000): Nutritional evaluation of some subtropical red and green seaweeds. Food Chemistry, 71, 475-482 https://doi.org/10.1016/S0308-8146(00)00175-8
 
Wu Li-chen, Ho Ja-an Annie, Shieh Ming-Chen, Lu In-Wei (2005): Antioxidant and Antiproliferative Activities of Spirulina and Chlorella Water Extracts. Journal of Agricultural and Food Chemistry, 53, 4207-4212 https://doi.org/10.1021/jf0479517
 
Yucetepe A., Ozcelik B. (2016): Bioactive peptides isolated from microalgae Spirulina platensis and their biofunctional activities. Akademik Gıda, 14: 412–417.
 
download PDF

© 2018 Czech Academy of Agricultural Sciences