Instrumental analytical tools for mycobacteria characterisation

Ozana V., Hruška K. (2021): Instrumental analytical tools for mycobacteria characterisation. Czech J. Food Sci., 39: 235–264.

download PDF

Mycobacteria in drinking water and in the water of swimming pools, whirlpools, hydrotherapy facilities and aquaria contribute significantly to human exposure to triggers of immune regulated chronic inflammatory and autoimmune diseases. Technological elements of water distribution systems, especially their inner surface, taps, shower heads and blind spots where sediments settle, affect the number of mycobacteria in the water. The review presents the possibilities of using analytical instruments for rapid determination of mycobacteria and for their typing as an alternative to classical culture and a method of monitoring specific nucleic acid sequences by polymerase chain reaction (PCR). Information about the use of flow cytometry (FCM), matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) spectrometry, Raman and infrared (IR) spectroscopy and biosensors are presented.

Abbas Q., Pissard A., Baeten V. (2020): Near-infrared, mid-infrared, and Raman spectroscopy. In: Pico Y. (ed.): Chemical Analysis of Food, Techniques and Applications. 2nd Ed. Waltham, USA, Elsevier Inc.: 77–134.
Ahmad A., Afghan S., Raykundalia C., Catty D. (1995): Diagnosis of tuberculosis by using ELISA to detect 38 KDa mycobacterial antigen in the patients. Medical Journal of Islamic World Academy of Sciences, 8: 155–160.
Ahmed M.K., Amiama F., Sealy E.A. (2009): Unique spectral features of DNA infrared bands of some microorganisms. Spectroscopy, 23: 291–297.
Akyar I., Cavusoglu C., Ayas M., Surucuoglu S., Ilki A., Kaya D.E., Besli Y. (2018): Evaluation of the performance of MALDI-TOF MS and DNA sequence analysis in the identification of mycobacteria species. Turkish Journal of Medical Sciences, 48: 1351–1357.
Alcaide F., Amlerova J., Bou G., Ceyssens P.J., Coll P., Corcoran D., Fangous M.S., Gonzalez-Alvarez I., Gorton R., Greub G., Hery-Arnaud G., Hrabak J., Ingebretsen A., Lucey B., Marekovic I., Mediavilla-Gradolph C., Monte M.R., O'Connor J., O'Mahony J., Opota O., O'Reilly B., Orth-Holler D., Oviano M., Palacios J.J., Palop B., Pranada A.B., Quiroga L., Rodriguez-Temporal D., Ruiz-Serrano M.J., Tudo G., Van den Bossche A., van Ingen J.,Rodriguez-Sanchez B. (2018): How to: Identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry. Clinical Microbiology and Infection, 24: 599–603.
Alcolea-Medina A., Fernandez M.T.C., Montiel N., Garcia M.P.L., Sevilla C.D., North N., Lirola M.J.M., Wilks M. (2019): An improved simple method for the identification of Mycobacteria by MALDI-TOF MS (matrix-assisted laser desorption-ionization mass spectrometry). Scientific Reports, 9: 20216.
Alula M.T., Krishnan S., Hendricks N.R., Karamchand L., Blackburn J.M. (2017): Identification and quantitation of pathogenic bacteria via in-situ formation of silver nanoparticles on cell walls, and their detection via SERS. Microchimica Acta, 184: 219–227.
Alvarez-Barrientos A., Arroyo J., Canton R., Nombela C., Sanchez-Perez M. (2000): Applications of flow cytometry to clinical microbiology. Clinical Microbiology Reviews, 13: 167–195.
Angeletti S., Ciccozzi M. (2019): Matrix-assisted laser desorption ionization time-of-flight mass spectrometry in clinical microbiology: An updating review. Infection Genetics and Evolution, 76: 104063.
Attallah A.M., Abdel Malak C.A., Ismail H., El-Saggan A.H., Omran M.M., Tabll A.A. (2003): Rapid and simple detection of a Mycobacterium tuberculosis circulating antigen in serum using dot-ELISA for field diagnosis of pulmonary tuberculosis. Journal of Immunoassay and Immunochemistry, 24: 79–87.
Bacanelli G., Olarte L.C., Silva M.R., Rodrigues R.A., Carneiro P.A.M., Kaneene J.B., Pasquatti T.N., Takatani H., Zumarraga M.J., Etges R.N., Araujo F.R., Verbisck N.V. (2019): Matrix assisted laser desorption ionization-time-of-flight mass spectrometry identification of Mycobacterium bovis in Bovinae. Journal of Veterinary Medical Science, 81: 1400–1408.
Balada-Llasat J.M., Kamboj K., Pancholi P. (2013): Identification of mycobacteria from solid and liquid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry in the clinical laboratory. Journal of Clinical Microbiology, 51: 2875–2879.
Baliga S., Murphy C., Sharon L., Shenoy S., Biranthabail D., Weltman H., Miller S., Ramasamy R., Shah J. (2018): Rapid method for detecting and differentiating Mycobacterium tuberculosis complex and non-tuberculous mycobacteria in sputum by fluorescence in situ hybridization with DNA probes. International Journal of Infectious Diseases, 75: 1–7.
Berney M., Hammes F., Bosshard F., Weilenmann H.U., Egli T. (2007): Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight kit in combination with flow cytometry. Applied and Environmental Microbiology, 73: 3283–3290.
Blanc L., Lenaerts A., Dartois V., Prideaux B. (2018): Visualization of mycobacterial biomarkers and tuberculosis drugs in infected tissue by MALDI-MS imaging. Analytical Chemistry, 90: 6275–6282.
Body B.A., Beard M.A., Slechta E.S., Hanson K.E., Barker A.P., Babady N.E., McMillen T., Tang Y.W., Brown-Elliott B.A., Iakhiaeva E., Vasireddy R., Vasireddy S., Smith T., Wallace R.J., Turner S., Curtis L., Butler-Wu S., Rychert J. (2018): Evaluation of the Vitek MS v3.0 matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Mycobacterium and Nocardia species. Journal of Clinical Microbiology, 56: e00237-18.
Bond C., Brown D., Freise A., Strain K.A. (2016): Interferometer techniques for gravitational-wave detection. Living Reviews in Relativity, 19: 1–217.
Boros-Major A., Bona A., Lovasz G., Molnar E., Marcsik A., Palfi G., Mark L. (2011): New perspectives in biomolecular paleopathology of ancient tuberculosis: A proteomic approach. Journal of Archaeological Science, 38: 197–201.
Bownds S., Kurzynski T.A., Norden M.A., Dufek J.L., Schell R.F. (1996): Rapid susceptibility testing for nontuberculosis mycobacteria using flow cytometry. Journal of Clinical Microbiology, 34: 1386–1390.
Brehm-Stecher B.F. (2008): Methods for whole cell detection of microorganisms. In: Camesano T., Mello C. (eds.): Microbial Surfaces. Washington, DC, USA, ACS Symposium Series, American Chemical Society: 29–51.
Broyer P., Perrot N., Rostaing H., Blaze J., Pinston F., Gervasi G., Charles M.H., Dachaud F., Dachaud J., Moulin F., Cordier S., Dauwalder O., Meugnier H., Vandenesch F. (2018): An automated sample preparation instrument to accelerate positive blood cultures microbial identification by MALDI-TOF mass spectrometry (Vitek® MS). Frontiers in Microbiology, 9: 1–14.
Bryson A.L., Hill E.M., Doern C.D. (2019): Matrix-assisted laser desorption/ionization time-of-flight: The revolution in progress. Clinics in Laboratory Medicine, 39: 391–403.
Buijtels P.C.A.M., Willemse-Erix H.F.M., Petit P.L.C., Endtz H.P., Puppels G.J., Verbrugh H.A., Van Belkum A., van Soolingen D., Maquelin K. (2008): Rapid identification of mycobacteria by Raman spectroscopy. Journal of Clinical Microbiology, 46: 961–965.
Bumbrah G.S., Sharma R.M. (2016): Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egyptian Journal of Forensic Sciences, 6: 209–215.
Carlos C., Maretto D.A., Poppi R.J., Sato M.I.Z., Ottoboni L.M.M. (2011): Fourier transform infrared microspectroscopy as a bacterial source tracking tool to discriminate fecal E. coli strains. Microchemical Journal, 99: 15–19.
Carroll P., Muwanguzi-Karugaba J., Melief E., Files M., Parish T. (2014): Identification of the translational start site of codon-optimized mCherry in Mycobacterium tuberculosis. BMC Research Notes, 7: 366–401.
Castro-Escarpulli G., Alonso-Aguilar N.M., Rivera Sánchez G., Bocanegra-Garcia V., Guo X., Juárez-Enríquez S.R., Luna-Herrera J., Martínez C.M., Aguilera-Arreola M.Q. (2015): Identification and typing methods for the study of bacterial infections: A brief review and mycobacterial as case of study. Archives of Clinical Microbiology, 7: 1–3.
Ceyssens P.J., Soetaert K., Timke M., Van den Bossche A., Sparbier K., De Cremer K., Kostrzewa M., Hendrickx M., Mathys V. (2017): Matrix-assisted laser desorption ionization-time of flight mass spectrometry for combined species identification and drug sensitivity testing in mycobacteria. Journal of Clinical Microbiology, 55: 624–634.
Chan S., Pullerits K., Keucken A., Perssonz K.M., Paul C.J., Radstrom P. (2019): Bacterial release from pipe biofilm in a full-scale drinking water distribution system. Nature Partner Journals (npj) – Biofilms and Microbiomes, 5: 1–8.
Chang S.C., Adriaens P. (2007): Nano-immunodetection and quantification of mycobacteria in metalworking fluids. Environmental Engineering Science, 24: 58–72.
Chang S.C., Anderson T.I., Bahrman S.E., Gruden C.L., Khijniak A.I., Adriaens P. (2005): Comparing recovering efficiency of immunomagnetic separation and centrifugation of mycobacteria in metalworking fluids. Journal of Industrial Microbiology and Biotechnology, 32: 629–638.
Costa M.P., Andrade C.A.S., Montenegro R.A., Melo F.L., Oliveira M.D.L. (2014): Self-assembled monolayers of mercaptobenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor. Journal of Colloid and Interface Science, 433: 141–148.
Costa P., Amaro A., Botelho A., Inacio J., Baptista P.V. (2010): Gold nanoprobe assay for the identification of mycobacteria of the Mycobacterium tuberculosis complex. Clinical Microbiology and Infection, 16: 1464–1469.
Costa-Alcalde J.J., Barbeito-Castineiras G., Gonzalez-Alba J.M., Aguilera A., Galan J.C., Perez-del-Molino M.L. (2019): Comparative evaluation of the identification of rapidly growing non-tuberculous mycobacteria by mass spectrometry (MALDI-TOF MS), GenoType Mycobacterium CM/AS assay and partial sequencing of the rpo beta gene with phylogenetic analysis as a reference method. Enfermedades Infecciosas y Microbiologia Clinica, 37: 160–166.
Cowan L.S., Mosher L., Diem L., Massey J.P., Crawford J.T. (2002): Variable-number-tandem repeat typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 by using mycobacterial interspersed repetitive units. Journal of Clinical Microbiology, 40: 1592–1602.
de Macedo C.S., Anderson D.M., Pascarelli B.M., Spraggins J.M., Sarno E.N., Schey K.L., Pessolani M.C.V. (2015): MALDI imaging reveals lipid changes in the skin of leprosy patients before and after multidrug therapy (MDT). Journal of Mass Spectrometry, 50: 1374–1385.
Di Gaudio F., Indelicato S., Indelicato S., Tricoli M.R., Stampone G., Bongiorno D. (2018): Improvement of a rapid direct blood culture microbial identification protocol using MALDI-TOF MS and performance comparison with SepsiTyper kit. Journal of Microbiological Methods, 155: 1–7.
Dina N.E., Colnita A., Szoke-Nagy T., Porav A.S. (2017): A critical review on ultrasensitive, spectroscopic-based methods for high-throughput monitoring of bacteria during infection treatment. Critical Reviews in Analytical Chemistry, 47: 499–512.
Diouani M.F., Ouerghi O., Refai A., Belgacem K., Tlili C., Laouini D., Essafi M. (2017): Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis. Materials Science & Engineering C-Materials for Biological Applications, 74: 465–470.
Dupont D. (2011): Immunochemical methods. In: Dupont D. (ed.): Analytical Methods | Immunochemical Methods. Encyclopedia of Dairy Sciences. Waltham, USA, Elsevier: 177–184.
Eberhardt K., Stiebing C., Matthaus C., Schmitt M., Popp J. (2015): Advantages and limitations of Raman spectroscopy for molecular diagnostics: An update. Expert Review of Molecular Diagnostics, 15: 773–787.
Egawa T., Yeh S.R. (2005): Structural and functional properties of hemoglobins from unicellular organisms as revealed by resonance Raman spectroscopy. Journal of Inorganic Biochemistry, 99: 72–96.
El Khechine A., Couderc C., Flaudrops C., Raoult D., Drancourt M. (2011): Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of mycobacteria in routine clinical practice. Plos One, 6: e24720.
Epperson L.E., Timke M., Hasan N.A., Godo P., Durbin D., Helstrom N.K., Shi G., Kostrzewa M., Strong M., Salfinger M. (2018): Evaluation of a novel MALDI Biotyper algorithm to distinguish Mycobacterium intracellulare from Mycobacterium chimaera. Frontiers in Microbiology, 9: 1–6.
Erokhina M.V., Nezlin L.P., Avdienko V.G., Voronezhska E.E., Lepekha L.N. (2016): Immunohistochemical detection of Mycobacterium tuberculosis in tissues of consumptives using laser scanning microscopy. Biology Bulletin, 43: 21–25.
Falkinham J.O. (2009): Surrounded by mycobacteria: Nontuberculous mycobacteria in the human environment. Journal of Applied Microbiology, 107: 356–367.
Falkinham J.O. (2011): Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerging Infectious Diseases, 17: 419–424.
Fangous M.S., Mougari F., Gouriou S., Calvez E., Raskine L., Cambau E., Payan C., Hery-Arnaud G. (2014): Classification algorithm for subspecies identification within the Mycobacterium abscessus species, based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology, 52: 3362–3369.
Fernandez R.E., Rohani A., Farmehini V., Swami N.S. (2017): Review: Microbial analysis in dielectrophoretic microfluidic systems. Analytica Chimica Acta, 966: 11–33.
Fuller K., Linden M.D., Lee-Pullen T., Fragall C., Erber W.N., Rohrig K.J. (2016): An active, collaborative approach to learning skills in flow cytometry. Advances in Physiology Education, 40: 176–185.
Ganareal T.A.C.S., Balbin M.M., Monserate J.J., Salazar J.R., Mingala C.N. (2018): Gold nanoparticle-based probes for the colorimetric detection of Mycobacterium avium subspecies paratuberculosis DNA. Biochemical and Biophysical Research Communications, 496: 988–997.
Gasol J.M., Del Giorgio P.A. (2000): Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Scientia Marina, 64: 197–224.
Genc G.E., Demir M., Yaman G., Kayar B., Koksal F., Satana D. (2018): Evaluation of MALDI-TOF MS for identification of nontuberculous mycobacteria isolated from clinical specimens in mycobacteria growth indicator tube medium. New Microbiologica, 41: 214–219.
Glazer C.S., Martyny J.W., Lee B., Sanchez T.L., Sells T.M., Newman L.S., Murphy J., Heifets L., Rose C.S. (2007): Nontuberculous mycobacteria in aerosol droplets and bulk water samples from therapy pools and hot tubs. Journal of Occupational and Environmental Hygiene, 4: 831–840.
Gopinath S.C.B., Perumal V., Kumaresan R., Lakshmipriya T., Rajintraprasad H., Rao B.S., Arshad M.K.M., Chen Y., Kotani N., Hashim U. (2016): Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis. Microchimica Acta, 183: 2697–2703.
Gopinath S.C.B., Tang T.H., Chen Y., Citartan M., Lakshmipriya T. (2014): Bacterial detection: From microscope to smartphone. Biosensors & Bioelectronics, 60: 332–342.
Gori A., Bandera A., Marchetti G., Esposti A.D., Catozzi L., Nardi G.P., Gazzola L., Ferrario G., van Embden J.D.A., van Soolingen D., Moroni M., Franzetti F. (2005): Spoligotyping and Mycobacterium tuberculosis. Emerging Infectious Diseases, 11: 1242–1248.
Grenot P., Luche H. (2020): Beadless absolute counting. Application of the unique properties of the peristaltic pump fluidic based system for volumetric cell counting. Beckman Coulter, Life Sciences (White Paper). Available at{59BBD0A5-8262-4A5E-94E5-6D0D7DF59652} (accessed Mar, 2020).
Gruden C., Skerlos S., Adriaens P. (2004): Flow cytometry for microbial sensing in environmental sustainability applications: Current status and future prospects. Fems Microbiology Ecology, 49: 37–49.
Gupta R.S., Lo B., Son J. (2018): Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Frontiers in Microbiology, 9: 1–41.
Hajdu T., Fothi E., Kovari I., Merczi M., Molnar A., Maasz G., Avar P., Marcsik A., Mark L. (2012): Bone tuberculosis in Roman Period Pannonia (western Hungary). Memorias do Instituto Oswaldo Cruz, 107: 1048–1053.
Hamid M.E., Fraser J.L., Wallace P.A., Besra G.S., Goodfellow M., Minnikin D.E., Ridell M. (1993): Antigenic glycolipids of Mycobacterium fortuitum based on trehalose acylated with 2-methyloctadec-2-enoic acid. Letters in Applied Microbiology, 16: 132–135.
Hammes F., Berney M., Wang Y., Vital M., Koster O., Egli T. (2008): Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Research, 42: 269–277.
Hammes F.A., Egli T. (2005): New method for assimilable organic carbon determination using flow-cytometric enumeration and a natural microbial consortium as inoculum. Environmental Science & Technology, 39: 3289–3294.
Han Y., Gu Y., Zhang A.C., Lo Y.H. (2016): Review: Imaging technologies for flow cytometry. Lab on a Chip, 16: 4639–4647.
Haridas V., Ranjbar S., Vorobjev I.A., Goldfeld A.E., Barteneva N.S. (2017): Imaging flow cytometry analysis of intracellular pathogens. Methods, 112: 91–104.
Haslam C., Hellicar J., Dunn A., Fuetterer A., Hardy N., Marshall P., Paape R., Pemberton M., Resemannand A., Leveridge M. (2016): The evolution of MALDI-TOF mass spectrometry toward ultra-high-throughput screening: 1536-well format and beyond. Journal of Biomolecular Screening, 21: 176–186.
Hayes J.M., Anderson L.C., Schultz J.A., Ugarov M., Egan T.F., Lewis E.K., Womack V., Woods A.S., Jackson S.N., Hauge R.H., Kittrell C., Ripley S., Murray K.K. (2011): Matrix assisted laser desorption ionization ion mobility time-of-flight mass spectrometry of bacteria. In: Fenselau C., Demirev P. (eds.): Rapid Characterization of Microorganisms by Mass Spectrometry. Washington, DC, USA, ACS Symposium Series, American Chemical Society: 143–160.
Hendon-Dunn C.L., Doris K.S., Thomas S.R., Allnutt J.C., Marriott A.A.N., Hatch K.A., Watson R.J., Bottley G., Marsh P.D., Taylor S.C., Bacon J. (2016): A flow cytometry method for rapidly assessing Mycobacterium tuberculosis responses to antibiotics with different modes of action. Antimicrobial Agents and Chemotherapy, 60: 3869–3883.
Hettick J.M., Kashon M.L., Simpson J.P., Siegel P.D., Mazurek G.H., Weissman D.N. (2004): Proteomic profiling of intact mycobacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analytical Chemistry, 76: 5769–5776.
Hiatt L.A., Cliffel D.E. (2012): Real-time recognition of Mycobacterium tuberculosis and lipoarabinomannan using the quartz crystal microbalance. Sensors and Actuators B: Chemical, 174: 245–252.
Himmel L.E., Hackett T.A., Moore J.L., Adams W.R., Thomas G., Novitskaya T., Caprioli R. M., Zijlstra A., Mahadevan-Jansen A., Boyd K.L. (2018): Beyond the H&E: Advanced technologies for in situ tissue biomarker imaging. Ilar Journal, 59: 51–65.
Hiraiwa M., Kim J.H., Lee H.B., Inoue S., Becker A.L., Weigel K.M., Cangelosi G.A., Lee K.H., Chung J.H. (2015): Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis. Journal of Micromechanics and Microengineering, 25: 055013.
Honda J.R., Knight V., Chan E.D. (2015): Pathogenesis and risk factors for nontuberculous mycobacterial lung disease. Clinics in Chest Medicine, 36: 1–11.
Hruska K., Cepica A. (2019): The Association of Nontuberculous Mycobacteria with Immune-Mediated Chronic Inflammatory and Autoimmune Diseases: A Call for Action. Brno, Czech Republic, Hruska Publishing: 46.
Hruska K., Kaevska M. (2012): Mycobacteria in water, soil, plants and air: A review. Veterinarni Medicina, 57: 623–679.
Hruska K., Pavlik I. (2014): Crohn's disease and related inflammatory diseases: from many single hypotheses to one 'superhypothesis'. Veterinarni Medicina, 59: 583–630.
Humphrey D.M., Weiner M.H. (1987): Mycobacterial antigen-detection by immunohistochemistry in pulmonary tuberculosis. Human Pathology, 18: 701–708.
Inoue S., Becker A.L., Kim J.H., Shu Z.Q., Soelberg S.D., Weigel K.M., Hiraiwa M., Cairns A., Lee H.B., Furlong C.E., Oh K., Lee K.H., Gao D., Chung J.H., Cangelosi G.A. (2014): Semi-automated, occupationally safe immunofluorescence microtip sensor for rapid detection of Mycobacterium cells in sputum. Plos One, 9: e86018.
Jang K.S., Kim Y.H. (2018): Rapid and robust MALDI-TOF MS techniques for microbial identification: A brief overview of their diverse applications. Journal of Microbiology, 56: 209–216.
Kaelin M.B., Kuster S.P., Hasse B., Schulthess B., Imkamp F., Halbe M., Sander P., Sax H., Schreiber P.W. (2020): Diversity of nontuberculous mycobacteria in heater-cooler devices – Results from prospective surveillance. The Journal of Hospital Infection, 105: 480–485.
Kim B.J., Kim B.R., Jeong J., Lim J.H., Park S.H., Lee S.H., Kim C.K., Kook Y.H., Kim B.J. (2018): A description of Mycobacterium chelonae subsp. gwanakae subsp. nov., a rapidly growing Mycobacterium with a smooth colony phenotype due to glycopeptidolipids. International Journal of Systematic and Evolutionary Microbiology, 68: 3772–3780.
Kim J., Hong S.C., Hong J.C., Chang C.L., Park T.J., Kim H.J., Lee J. (2015): Clinical immunosensing of tuberculosis CFP-10 antigen in urine using interferometric optical fiber array. Sensors and Actuators B-Chemical, 216: 184–191.
Kliem M., Sauer S. (2012): The essence on mass spectrometry based microbial diagnostics. Current Opinion in Microbiology, 15: 397–402.
Kotlarz N., Rockey N., Olson T.M., Haig S.J., Sanford L., Lipuma J.J., Raskin L. (2018): Biofilms in full-scale drinking water ozone contactors contribute viable bacteria to ozonated water. Environmental Science & Technology, 52: 2618–2628.
Kuckuck F.W., Edwards B.S., Sklar L.A. (2001): High throughput flow cytometry. Cytometry, 44: 83–90.<83::AID-CYTO1085>3.0.CO;2-O
Kuehl R., Banderet F., Egli A., Keller P.M., Frei R., Dobele T., Eckstein F., Widmer A.F. (2018): Different types of heater-cooler units and their risk of transmission of Mycobacterium chimaera during open-heart surgery: Clues from device design. Infection Control and Hospital Epidemiology, 39: 834–840.
Kumanan V., Nugen S.R., Baeumner A.J., Chang Y.F. (2009): A biosensor assay for the detection of Mycobacterium avium subsp paratuberculosis in fecal samples. Journal of Veterinary Science, 10: 35–42.
Lange J.L., Thorne P.S., Lynch N. (1997): Application of flow cytometry and fluorescent in situ hybridization for assessment of exposures to airborne bacteria. Applied and Environmental Microbiology, 63: 1557–1563.
Larrouy-Maumus G., Puzo G. (2015): Mycobacterial envelope lipids fingerprint from direct MALDI-TOF MS analysis of intact bacilli. Tuberculosis, 95: 75–85.
Laval F., Laneelle M.A., Deon C., Monsarrat B., Daffe M. (2001): Accurate molecular mass determination of mycolic acids by MALDI-TOF mass spectrometry. Analytical Chemistry, 73: 4537–4544.
Law J.W.F., Ab Mutalib N.S., Chan K.G., Lee L.H. (2015): Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Frontiers in Microbiology, 5: 1–19.
Lee H., Yoon TJ., Weissleder R. (2009): Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. Angewandte Chemie-International Edition, 48: 5657–5660.
Lee J., Adegoke O., Park E.Y. (2019): High-performance biosensing systems based on various nanomaterials as signal transducers. Biotechnology Journal, 14: 1800249.
Lin C.S., Su C.C., Hsieh S.C., Lu C.C., Wu T.L., Jia J.H., Wu T.S., Han C.C., Tsai W.C., Lu J.J., Lai H.C. (2015): Rapid identification of Mycobacterium avium clinical isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Microbiology Immunology and Infection, 48: 205–212.
Liong M., Hoang A.N., Chung J., Gural N., Ford C.B., Min C., Shah R.R., Ahmad R., Fernandez-Suarez M., Fortune S.M., Toner M., Lee H., Weissleder R. (2013): Magnetic barcode assay for genetic detection of pathogens. Nature Communications, 4: 1752.
Liu C., Jiang D.N., Xiang G.M., Liu L.L., Liu F., Pu X.Y. (2014): An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle-polyaniline nanocomposite. Analyst, 139: 5460–5465.
Liu T.T., Kong W.W., Chen N., Zhu J., Wang J.Q., He X.Q., Jin Y. (2016): Bacterial characterization of Beijing drinking water by flow cytometry and MiSeq sequencing of the 16S rRNA gene. Ecology and Evolution, 6: 923–934.
Lorenz B., Wichmann C., Stockel S., Rosch P., Popp J. (2017): Cultivation-free Raman spectroscopic investigations of bacteria. Trends in Microbiology, 25: 413–424.
Lu C.Y., Egawa T., Mukai M., Poole R.K., Yeh S.R. (2008): Hemoglobins from Mycobacterium tuberculosis and Campylobacter jejuni: A comparative study with resonance Raman spectroscopy. Globins and Other Nitric Oxide-Reactive Proteins, Part B, 437: 255–286.
Machen A., Kobayashi M., Connelly M.R., Wang Y.F. (2013): Comparison of heat inactivation and cell disruption protocols for identification of mycobacteria from solid culture media by use of Vitek matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology, 51: 4226–4229.
Marin P.A., Botero L.E., Robledo J.A., Murillo A.M., Torres R.A., Montagut Y.J., Pabon E., Jaramillo M. (2015): Mycobacterium tuberculosis 38 kDa antigen purification and potential diagnostic use by piezoelectric immunosensors. Acta Biologica Colombiana, 20: 129–139.
Mark L., Patonai Z., Vaczy A., Lorand T., Marcsik A. (2010): High-throughput mass spectrometric analysis of 1400-year-old mycolic acids as biomarkers for ancient tuberculosis infection. Journal of Archaeological Science, 37: 302–305.
Marquetoux N., Ridler A., Heuer C., Wilson P. (2019): What counts? A review of in vitro methods for the enumeration of Mycobacterium avium subsp. paratuberculosis. Veterinary Microbiology, 230: 265–272.
Mather C.A., Rivera S.F., Butler-Wu S.M. (2014): Comparison of the Bruker biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of mycobacteria using simplified protein extraction protocols. Journal of Clinical Microbiology, 52: 130–138.
Matsishin M., Rachkov A., Errachid A., Dzyadevych S., Soldatkin A. (2016): Development of impedimetric DNA biosensor for selective detection and discrimination of oligonucleotide sequences of the rpoB gene of Mycobacterium tuberculosis. Sensors and Actuators B-Chemical, 222: 1152–1158.
McNerney R., Daley P. (2011): Towards a point-of-care test for active tuberculosis: Obstacles and opportunities. Nature Reviews Microbiology, 9: 204–213.
McNerney R., Wondafrash B.A., Amena K., Tesfaye A., McCash E.M., Murray N.J. (2010): Field test of a novel detection device for Mycobacterium tuberculosis antigen in cough. BMC Infectious Diseases, 10: 1–6.
McPartlin D.A., O'Kennedy R.J. (2014): Point-of-care diagnostics, a major opportunity for change in traditional diagnostic approaches: Potential and limitations. Expert Review of Molecular Diagnostics, 14: 979–998.
Mediavilla-Gradolph M.C., De Toro-Peinado I., Bermudez-Ruiz M.P., Garcia-Martinez M.D., Ortega-Torres M., Quezel-Guerraz N.M., Palop-Borras B. (2015): Use of MALDI-TOF MS for identification of nontuberculous Mycobacterium species isolated from clinical specimens. Biomed Research International, 2015: 1–6.
Michno W., Wehrli P.M., Blennow K., Zetterberg H., Hanrieder J. (2019): Molecular imaging mass spectrometry for probing protein dynamics in neurodegenerative disease pathology. Journal of Neurochemistry, 151: 488–506.
Minero G.A.S., Tefiku E., Garbarino F., Fock J., Hansen M.F. (2020): On-chip DNA analysis of tuberculosis based on magnetic nanoparticle clustering induced by rolling circle amplification products. IEEE Magnetics Letters, 11: 3100105.
Miodek A., Mejri N., Gomgnimbou M., Sola C., Korri-Youssoufi H. (2015): E-DNA sensor of Mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM). Analytical Chemistry, 87: 9257–9264.
Mobed A., Baradaran B., de la Guardia M., Agazadeh M., Hasanzadeh M., Rezaee M.A., Mosafer J., Mokhtarzadeh A., Hamblin M.R. (2019): Advances in detection of fastidious bacteria: From microscopic observation to molecular biosensors. TrAC – Trends in Analytical Chemistry, 113: 157–171.
Monteiro J.T.C., Lima K.V.B., Barretto A.R., Furlaneto I.P., Goncalves G.M., da Costa A.R.F., Lopes M.L., Dalcolmo M.P. (2018): Clinical aspects in patients with pulmonary infection caused by mycobacteria of the Mycobacterium abscessus complex, in the Brazilian Amazon. Jornal Brasileiro de Pneumologia, 44: 93–98.
Moreno E., Miller E., Miller E., Totty H., Deol P. (2018): A novel liquid media mycobacteria extraction method for MALDI-TOF MS identification using VITEK® MS. Journal of Microbiological Methods, 144: 128–133.
Mosier-Boss P.A. (2017): Review on SERS of bacteria. Biosensors-Basel, 7: 1–26.
Muhlig A., Bocklitz T., Labugger I., Dees S., Henk S., Richter E., Andres S., Merker M., Stockel S., Weber K., Cialla-May D., Popp J. (2016): LOC-SERS: A promising closed system for the identification of mycobacteria. Analytical Chemistry, 88: 7998–8004.
Murphy B., Dempsey E. (2020): Evaluation of an Ag85B immunosensor with potential for electrochemical Mycobacterium tuberculosis diagnostics. ECS Journal of Solid State Science and Technology, 9: 115011.
Mustafa T., Wiker H.G., Mfinanga S.G.M., Morkve O., Sviland L. (2006): Immunohistochemistry using a Mycobacterium tuberculosis complex specific antibody for improved diagnosis of tuberculous lymphadenitis. Modern Pathology, 19: 1606–1614.
Nagy G., Lorand T., Patonai Z., Montsko G., Bajnoczky I., Marcsik A., Mark L. (2008): Analysis of pathological and non-pathological human skeletal remains by FT-IR spectroscopy. Forensic Science International, 175: 55–60.
Nasseri B., Soleimani N., Rabiee N., Kalbasi A., Karimi M., Hamblin M.R. (2018): Point-of-care microfluidic devices for pathogen detection. Biosensors and Bioelectronics, 117: 112–128.
Neumann A.C., Bauer D., Hoelscher M., Haisch C., Wieser A. (2019): Identifying dormant growth state of mycobacteria by orthogonal analytical approaches on a single cell and ensemble basis. Analytical Chemistry, 91: 881–887.
Ng B.Y.C., Wee E.J.H., West N.P., Trau M. (2016): Naked-eye colorimetric and electrochemical detection of Mycobacterium tuberculosis – toward rapid screening for active case finding. ACS Sensors, 1: 173–178.
Ng B.Y.C., Xiao W., West N.P., Wee E.J.H., Wang Y.L., Trau M. (2015): Rapid, single-cell electrochemical detection of Mycobacterium tuberculosis using colloidal gold nanoparticles. Analytical Chemistry, 87: 10613–10618.
Nishiuchi Y., Iwamoto T., Maruyama F. (2017): Infection sources of a common non-tuberculous mycobacterial pathogen, Mycobacterium avium complex. Frontiers in Medicine, 4: 1–17.
Notermans S., Wernars K. (1991): Immunological methods for detection of foodborne pathogens and their toxins. International Journal of Food Microbiology, 12: 91–102.
Novais A., Freitas A.R., Rodrigues C., Peixe L. (2019): Fourier transform infrared spectroscopy: Unlocking fundamentals and prospects for bacterial strain typing. European Journal of Clinical Microbiology & Infectious Diseases, 38: 427–448.
Nunez-Bajo E., Silva Pinto Collins A., Kasimatis M., Cotur Y., Asfour T., Tanriverdi U., Grell M., Kaisti M., Senesi G., Stevenson K., Guder F. (2020): Disposable silicon-based all-in-one micro-qPCR for apid on-site detection of pathogens. Nature Communications, 11: 6176.
Nurmalasari R., Yohan, Gaffar S., Hartati Y.W. (2015): Label-free electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis using gold electrode modified by self-assembled monolayer of thiol. Procedia Chemistry, 17: 111–117.
Parikh S.J., Goyne K.W., Margenot A.J., Mukome F.N.D., Calderon F.J. (2014): Soil chemical insights provided through vibrational spectroscopy. Advances in Agronomy, 126: 1–148.
Park J.S., Choi S.H., Hwang S.M., Hong Y.J., Kim T.S., Park K.U., Song J., Kim E.C. (2016): The impact of protein extraction protocols on the performance of currently available MALDI-TOF mass spectrometry for identification of mycobacterial clinical isolates cultured in liquid media. Clinica Chimica Acta, 460: 190–195.
Pashchenko O., Shelby T., Banerjee T., Santra S. (2018): A comparison of optical, electrochemical, magnetic, and colorimetric point-of-care biosensors for infectious disease diagnosis. ACS Infectious Diseases, 4: 1162–1178.
Patel R. (2015): MALDI-TOF MS for the diagnosis of infectious diseases. Clinical Chemistry, 61: 100–111.
Pence I., Mahadevan-Jansen A. (2016): Clinical instrumentation and applications of Raman spectroscopy. Chemical Society Reviews, 45: 1958–1979.
Perkins S.D., Mayfield J., Fraser V., Angenent L.T. (2009): Potentially pathogenic bacteria in shower water and air of a stem cell transplant unit. Applied and Environmental Microbiology, 75: 5363–5372.
Pesala B., Gavarna H., Kumar A., Kumaravelu C., Scaria V., Sivasubbu S. (2012): Non-invasive detection of Mycobacterium tuberculosis using IR and NIR spectroscopy. In: Proceedings of the 37th International Conference on Infrared, Millimeter, and Terahertz Waves, IEEE, Wollongong, Australia, Sept 23–28, 2012: 1–2.
Pina-Vaz C., Costa-de-Oliveira S., Rodrigues A.G. (2005): Safe susceptibility testing of Mycobacterium tuberculosis by flow cytometry with the fluorescent nucleic acid stain SYTO 16. Journal of Medical Microbiology, 54: 77–81.
Pourakbari R., Shadjou N., Yousefi H., Isildak I., Yousefi M., Rashidi M.R., Khalilzadeh B. (2019): Recent progress in nanomaterial-based electrochemical biosensors for pathogenic bacteria. Microchimica Acta, 186: 1–13.
Prabowo B.A., Chang Y.F., Lai H.C., Alom A., Pal P., Lee Y.Y., Chiu N.F., Hatanaka K., Su L.C., Liu K.C. (2018): Rapid screening of Mycobacterium tuberculosis complex (MTBC) in clinical samples by a modular portable biosensor. Sensors and Actuators B-Chemical, 254: 742–748.
Pranada A.B., Witt E., Bienia M., Kostrzewa M., Timke M. (2017): Accurate differentiation of Mycobacterium chimaera from Mycobacterium intracellulare by MALDI-TOF MS analysis. Journal of Medical Microbiology, 66: 670–677.
Prest E.I., Hammes F., Kotzsch S., van Loosdrecht M.C., Vrouwenvelder J.S. (2013): Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method. Water Research, 47: 7131–7142.
Primm T.P., Lucero C.A., Falkinham J.O. (2004): Health impacts of environmental mycobacteria. Clinical Microbiology Reviews, 17: 98–106.
Puk K., Banach T., Wawrzyniak A., Adaszek L., Zietek J., Winiarczyk S., Guz L. (2018): Detection of Mycobacterium marinum, M. peregrinum, M. fortuitum and M. abscessus in aquarium fish. Journal of Fish Diseases, 41: 153–156.
Quesada-Gonzalez D., Merkoci A. (2015): Nanoparticle-based lateral flow biosensors. Biosensors & Bioelectronics, 73: 47–63.
Quintelas C., Ferreira E.C., Lopes J.A., Sousa C. (2018): An overview of the evolution of infrared spectroscopy applied to bacterial typing. Biotechnology Journal, 13: 1700449.
Ravva S.V., Harden L.A., Sarreal C.Z. (2017): Characterization and differentiation of Mycobacterium avium subsp paratuberculosis from other mycobacteria using matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Frontiers in Cellular and Infection Microbiology, 7: 1–8.
Rebuffo-Scheer C.A., Kirschner C., Staemmler M., Naumann D. (2007): Rapid species and strain differentiation of non-tubercoulous mycobacteria by Fourier-transform infrared micro spectroscopy. Journal of Microbiological Methods, 68: 282–290.
Rivera-Betancourt O.E., Karls R., Grosse-Siestrup B., Helms S., Quinn F., Dluhy R.A. (2013): Identification of mycobacteria based on spectroscopic analyses of mycolic acid profiles. Analyst, 138: 6774–6785.
Rodriguez-Temporal D., Perez-Risco D., Struzka E.A., Mas M., Alcaide F. (2018): Evaluation of two protein extraction protocols based on freezing and mechanical disruption for identifying nontuberculous mycobacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry from liquid and solid cultures. Journal of Clinical Microbiology, 56: e01548.
Rotcheewaphan S., Lemon J.K., Desai U.U., Henderson C.M., Zelazny A.M. (2019): Rapid one-step protein extraction method for the identification of mycobacteria using MALDI-TOF MS. Diagnostic Microbiology and Infectious Disease, 94: 355–360.
Rzagalinski I., Volmer D.A. (2017): Quantification of low molecular weight compounds by MALDI imaging mass spectrometry – A tutorial review. Biochimica et Biophysica Acta-Proteins and Proteomics, 1865: 726–739.
Santos M.I., Gerbino E., Tymczyszyn E., Gomez-Zavaglia A. (2015): Applications of infrared and Raman spectroscopies to probiotic investigation. Foods, 4: 283–305.
Schopf E., Liu Y., Deng J.C., Yang S.Y., Cheng G.H., Chen Y. (2011): Mycobacterium tuberculosis detection via rolling circle amplification. Analytical Methods, 3: 267–273.
Schulze-Röbbecke R. (1993): Mycobacteria in the environment (Mykobakterien in der Umwelt). Immunitat und Infektio, 21: 126–131. (in German)
Schulze-Röbbecke R., Fischeder R. (1989): Mycobacteria in biofilms. Zentralblatt fur Hygiene und Umweltmedizin (International journal of hygiene and environmental medicine), 188: 385–390.
Selinummi J., Seppala J., Yli-Harja O., Puhakka J.A. (2005): Software for quantification of labeled bacteria from digital microscope images by automated image analysis. Biotechniques, 39: 859–863.
Sevilla I.A., Molina E., Elguezabal N., Perez V., Garrido J.M., Justea R.A. (2015): Detection of mycobacteria, Mycobacterium avium subspecies, and Mycobacterium tuberculosis complex by a novel tetraplex real-time PCR assay. Journal of Clinical Microbiology, 53: 930–940.
Shi H.M., Sun J.J., Han R.R., Ding C.F., Hu F.P., Yu S.N. (2020): The strategy for correcting interference from water in Fourier transform infrared spectrum based bacterial typing. Talanta, 208: 120347.
Silva L.B., Veigas B., Doria G., Costa P., Inacio J., Martins R., Fortunato E., Baptista P.V. (2011): Portable optoelectronic biosensing platform for identification of mycobacteria from the Mycobacterium tuberculosis complex. Biosensors and Bioelectronics, 26: 2012–2017.
Sin M.L.Y., Mach K.E., Wong P.K., Liao J.C. (2014): Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Review of Molecular Diagnostics, 14: 225–244.
Singhal N., Kumar M., Kanaujia P.K., Virdi J.S. (2015): MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Frontiers in Microbiology, 6: 1–16.
Sivanesan A., Witkowska E., Adamkiewicz W., Dziewit L., Kaminska A., Waluk J. (2014): Nanostructured silver-gold bimetallic SERS substrates for selective identification of bacteria in human blood. Analyst, 139: 1037–1043.
SLMB (2012): Determining the total cell count and ratios of high and low nucleic acid content cells in freshwater using flow cytometry. Analysis Method 333.1, the Swiss Food Book (Schweizerische Lebensmittelbuch). Switzerland, Federal Office of Public Health.
Smartt A.E., Ripp S. (2011): Bacteriophage reporter technology for sensing and detecting microbial targets. Analytical and Bioanalytical Chemistry, 400: 991–1007.
Smith D.W., Randall H.M., Maclennan A.P., Putney R.K., Rao S.V. (1960): Detection of specific lipids in mycobacteria by infrared spectroscopy. Journal of Bacteriology, 79: 217–229.
Solomon I.H., Johncilla M.E., Hornick J.L., Milner D.A. (2017): The utility of immunohistochemistry in mycobacterial infection: A proposal for multimodality testing. American Journal of Surgical Pathology, 41: 1364–1370.
Soo P.C., Horng Y.T., Chang K.C., Wang J.Y., Hsueh P.R., Chuang C.Y., Lu C.C., Lai H.C. (2009): A simple gold nanoparticle probes assay for identification of Mycobacterium tuberculosis and Mycobacterium tuberculosis complex from clinical specimens. Molecular and Cellular Probes, 23: 240–246.
Stockel S., Meisel S., Lorenz B., Kloss S., Henk S., Dees S., Richter E., Andres S., Merker M., Labugger I., Rosch P., Popp J. (2017): Raman spectroscopic identification of Mycobacterium tuberculosis. Journal of Biophotonics, 10: 727–734.
Stockel S., Stanca A.S., Helbig J., Rosch P., Popp J. (2015): Raman spectroscopic monitoring of the growth of pigmented and non-pigmented mycobacteria. Analytical and Bioanalytical Chemistry, 407: 8919–8923.
Tang M.J., Mcewen G.D., Wu Y.Z., Miller C.D., Zhou A.H. (2013): Characterization and analysis of mycobacteria and Gram-negative bacteria and co-culture mixtures by Raman microspectroscopy, FTIR, and atomic force microscopy. Analytical and Bioanalytical Chemistry, 405: 1577–1591.
Thiruppathiraja C., Kamatchiammal S., Adaikkappan P., Santhosh D.J., Alagar M. (2011): Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Analytical Biochemistry, 417: 73–79.
Torres-Chavolla E., Alocilja E.C. (2011): Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Biosensors & Bioelectronics, 26: 4614–4618.
Tortoli E. (2006): The new mycobacteria: An update. FEMS Immunology and Medical Microbiology, 48: 159–178.
Torvinen E., Torkko P., Nevalainen A., Rintala H. (2010): Real-time PCR detection of environmental mycobacteria in house dust. Journal of Microbiological Methods, 82: 78–84.
Tseng S.P., Teng S.H., Lee P.S., Wang C.F., Yu J.S., Lu P.L. (2013): Rapid identification of M. abscessus and M. massiliense by MALDI-TOF mass spectrometry with a comparison to sequencing methods and antimicrobial susceptibility patterns. Future Microbiology, 8: 1381–1389.
Vaerewijck M.J.M., Huys G., Palomino J.C., Swings J., Portaels F. (2005): Mycobacteria in drinking water distribution systems: Ecology and significance for human health. FEMS Microbiology Reviews, 29: 911–934.
Van Belkum A., Durand G., Peyret M., Chatellier S., Zambardi G., Schrenzel J., Shortridge D., Engelhardt A., Dunne W.M. (2013): Rapid clinical bacteriology and its future impact. Annals of Laboratory Medicine, 33: 14–27.
Van Emon J.M. (2011): Immunoassays in biotechnology. In: Moo-Young M. (ed.): The Elsevier Encyclopedia: Comprehensive Biotechnology. 2nd Ed. Amsterdam, Netherlands, Elsevier BV: 659–667.
Van Nevel S., Buysschaert B., De Roy K., De Gusseme B., Clement L., Boon N. (2017a): Flow cytometry for immediate follow-up of drinking water networks after maintenance. Water Research, 111: 66–73.
Van Nevel S., Koetzsch S., Proctor C.R., Besmer M.D., Prest E.I., Vrouwenvelder J.S., Knezev A., Boon N., Hammes F. (2017b): Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. Water Research, 113: 191–206.
Vanhauteghem D., Audenaert K., Demeyere K., Hoogendoorn F., Janssens G.P.J., Meyer E. (2019): Flow cytometry, a powerful novel tool to rapidly assess bacterial viability in metal working fluids: Proof-of-principle. Plos One, 14: e0211583.
Veigas B., Jacob J.M., Costa M.N., Santos D.S., Viveiros M., Inacio J., Martins R., Barquinha P., Fortunato E., Baptista P.V. (2012): Gold on paper-paper platform for Au-nanoprobe TB detection. Lab on a Chip, 12: 4802–4808.
Verstijnen C.P.H.J., Ly H.M., Polman K., Richter C., Smits S.P., Maselle S.Y., Peerbooms P., Rienthong D., Montreewasuwat N., Koanjanart S., Trach D.D., Kuijper S., Kolk A.H.J. (1991): Enzyme-linked-immunosorbent-assay using monoclonal-antibodies for identification of mycobacteria from early cultures. Journal of Clinical Microbiology, 29: 1372–1375.
Vives-Rego J., Lebaron P., Nebe-von Caron G. (2000): Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiology Reviews, 24: 429–448.
Walch A., Rauser S., Deininger S.O., Hofler H. (2008): MALDI imaging mass spectrometry for direct tissue analysis: A new frontier for molecular histology. Histochemistry and Cell Biology, 130: 421–434.
Wang Y., Hammes F., Boon N., Egli T. (2007): Quantification of the filterability of freshwater bacteria through 0.45, 0.22, and 0.1 microm pore size filters and shape-dependent enrichment of filterable bacterial communities. Environmental Science & Technology, 41: 7080–7086.
Wang Y.Y., Hammes F., De Roy K., Verstraete W., Boon N. (2010): Past, present and future applications of flow cytometry in aquatic microbiology. Trends in Biotechnology, 28: 416–424.
Wayengera M., Mwebaza I., Welishe J., Bayiyana A., Kateete D.P., Wampande E., Kirimunda S., Kigozi E., Katabazi F., Musubika C., Kyobe S., Babirye P., Asiimwe B., Joloba M.L. (2020): Immuno-diagnosis of Mycobacterium tuberculosis in sputum, and reduction of timelines for its positive cultures to within 3 h by pathogen-specific thymidylate kinase expression assays. BioMed Central Research Notes, 10: 1–13.
Welker M., Van Belkum A., Girard V., Charrier J.P., Pincus D. (2019): An update on the routine application of MALDI-TOF MS in clinical microbiology. Expert Review of Proteomics, 16: 695–710.
Wenning M., Scherer S. (2013): Identification of microorganisms by FTIR spectroscopy: Perspectives and limitations of the method. Applied Microbiology and Biotechnology, 97: 7111–7120.
Winder C.L., Gordon S.V., Dale J., Hewinson R.G., Goodacre R. (2006): Metabolic fingerprints of Mycobacterium bovis cluster with molecular type: Implications for genotype-phenotype links. Microbiology, 152: 2757–2765.
Xiang Y., Deng K., Xia H., Yao C.Y., Chen Q.H., Zhang L.Q., Liu Z.Y., Fu W.L. (2013): Isothermal detection of multiple point mutations by a surface plasmon resonance biosensor with Au nanoparticles enhanced surface-anchored rolling circle amplification. Biosensors & Bioelectronics, 49: 442–449.
Xiang Y., Zhu X., Huang Q., Zheng J., Fu W. (2015): Real-time monitoring of Mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor. Biosensors & Bioelectronics, 66: 512–519.
Yang F.Y., Chen J.H., Ruan Q.Q., Saqib H.S.A., He W.Y., You M.S. (2020): Mass spectrometry imaging: An emerging technology for the analysis of metabolites in insects. Archives of Insect Biochemistry and Physiology, 103: e21643.
Zhang C.Q., Song X.Q., Zhao Y., Zhang H., Zhao S.M., Mao F.F., Bai B., Wu S.P., Shi C.H. (2015): Mycobacterium tuberculosis secreted proteins as potential biomarkers for the diagnosis of active tuberculosis and latent tuberculosis infection. Journal of Clinical Laboratory Analysis, 29: 375–382.
Zribi B., Roy E., Pallandre A., Chebil S., Koubaa M., Mejri N., Gomez H.M., Sola C., Korri-Youssoufi H., Haghiri-Gosnet A.M. (2016): A microfluidic electrochemical biosensor based on multiwall carbon nanotube/ferrocene for genomic DNA detection of Mycobacterium tuberculosis in clinical isolates. Biomicrofluidics, 10: 014115.
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti