Instrumental analytical tools for mycobacteria characterisation

https://doi.org/10.17221/69/2021-CJFSCitation:

Ozana V., Hruška K. (2021): Instrumental analytical tools for mycobacteria characterisation. Czech J. Food Sci., 39: 235–264.

download PDF

Mycobacteria in drinking water and in the water of swimming pools, whirlpools, hydrotherapy facilities and aquaria contribute significantly to human exposure to triggers of immune regulated chronic inflammatory and autoimmune diseases. Technological elements of water distribution systems, especially their inner surface, taps, shower heads and blind spots where sediments settle, affect the number of mycobacteria in the water. The review presents the possibilities of using analytical instruments for rapid determination of mycobacteria and for their typing as an alternative to classical culture and a method of monitoring specific nucleic acid sequences by polymerase chain reaction (PCR). Information about the use of flow cytometry (FCM), matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) spectrometry, Raman and infrared (IR) spectroscopy and biosensors are presented.

References:
Abbas Q., Pissard A., Baeten V. (2020): Near-infrared, mid-infrared, and Raman spectroscopy. In: Pico Y. (ed.): Chemical Analysis of Food, Techniques and Applications. 2nd Ed. Waltham, USA, Elsevier Inc.: 77–134.
 
Ahmad A., Afghan S., Raykundalia C., Catty D. (1995): Diagnosis of tuberculosis by using ELISA to detect 38 KDa mycobacterial antigen in the patients. Medical Journal of Islamic World Academy of Sciences, 8: 155–160.
 
Ahmed M.K., Amiama F., Sealy E.A. (2009): Unique spectral features of DNA infrared bands of some microorganisms. Spectroscopy, 23: 291–297. https://doi.org/10.1155/2009/751746
 
Akyar I., Cavusoglu C., Ayas M., Surucuoglu S., Ilki A., Kaya D.E., Besli Y. (2018): Evaluation of the performance of MALDI-TOF MS and DNA sequence analysis in the identification of mycobacteria species. Turkish Journal of Medical Sciences, 48: 1351–1357. https://doi.org/10.3906/sag-1801-198
 
Alcaide F., Amlerova J., Bou G., Ceyssens P.J., Coll P., Corcoran D., Fangous M.S., Gonzalez-Alvarez I., Gorton R., Greub G., Hery-Arnaud G., Hrabak J., Ingebretsen A., Lucey B., Marekovic I., Mediavilla-Gradolph C., Monte M.R., O'Connor J., O'Mahony J., Opota O., O'Reilly B., Orth-Holler D., Oviano M., Palacios J.J., Palop B., Pranada A.B., Quiroga L., Rodriguez-Temporal D., Ruiz-Serrano M.J., Tudo G., Van den Bossche A., van Ingen J.,Rodriguez-Sanchez B. (2018): How to: Identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry. Clinical Microbiology and Infection, 24: 599–603. https://doi.org/10.1016/j.cmi.2017.11.012
 
Alcolea-Medina A., Fernandez M.T.C., Montiel N., Garcia M.P.L., Sevilla C.D., North N., Lirola M.J.M., Wilks M. (2019): An improved simple method for the identification of Mycobacteria by MALDI-TOF MS (matrix-assisted laser desorption-ionization mass spectrometry). Scientific Reports, 9: 20216. https://doi.org/10.1038/s41598-019-56604-7
 
Alula M.T., Krishnan S., Hendricks N.R., Karamchand L., Blackburn J.M. (2017): Identification and quantitation of pathogenic bacteria via in-situ formation of silver nanoparticles on cell walls, and their detection via SERS. Microchimica Acta, 184: 219–227. https://doi.org/10.1007/s00604-016-2013-2
 
Alvarez-Barrientos A., Arroyo J., Canton R., Nombela C., Sanchez-Perez M. (2000): Applications of flow cytometry to clinical microbiology. Clinical Microbiology Reviews, 13: 167–195. https://doi.org/10.1128/CMR.13.2.167
 
Angeletti S., Ciccozzi M. (2019): Matrix-assisted laser desorption ionization time-of-flight mass spectrometry in clinical microbiology: An updating review. Infection Genetics and Evolution, 76: 104063. https://doi.org/10.1016/j.meegid.2019.104063
 
Attallah A.M., Abdel Malak C.A., Ismail H., El-Saggan A.H., Omran M.M., Tabll A.A. (2003): Rapid and simple detection of a Mycobacterium tuberculosis circulating antigen in serum using dot-ELISA for field diagnosis of pulmonary tuberculosis. Journal of Immunoassay and Immunochemistry, 24: 79–87. https://doi.org/10.1081/IAS-120018470
 
Bacanelli G., Olarte L.C., Silva M.R., Rodrigues R.A., Carneiro P.A.M., Kaneene J.B., Pasquatti T.N., Takatani H., Zumarraga M.J., Etges R.N., Araujo F.R., Verbisck N.V. (2019): Matrix assisted laser desorption ionization-time-of-flight mass spectrometry identification of Mycobacterium bovis in Bovinae. Journal of Veterinary Medical Science, 81: 1400–1408. https://doi.org/10.1292/jvms.19-0214
 
Balada-Llasat J.M., Kamboj K., Pancholi P. (2013): Identification of mycobacteria from solid and liquid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry in the clinical laboratory. Journal of Clinical Microbiology, 51: 2875–2879. https://doi.org/10.1128/JCM.00819-13
 
Baliga S., Murphy C., Sharon L., Shenoy S., Biranthabail D., Weltman H., Miller S., Ramasamy R., Shah J. (2018): Rapid method for detecting and differentiating Mycobacterium tuberculosis complex and non-tuberculous mycobacteria in sputum by fluorescence in situ hybridization with DNA probes. International Journal of Infectious Diseases, 75: 1–7. https://doi.org/10.1016/j.ijid.2018.07.011
 
Berney M., Hammes F., Bosshard F., Weilenmann H.U., Egli T. (2007): Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight kit in combination with flow cytometry. Applied and Environmental Microbiology, 73: 3283–3290. https://doi.org/10.1128/AEM.02750-06
 
Blanc L., Lenaerts A., Dartois V., Prideaux B. (2018): Visualization of mycobacterial biomarkers and tuberculosis drugs in infected tissue by MALDI-MS imaging. Analytical Chemistry, 90: 6275–6282. https://doi.org/10.1021/acs.analchem.8b00985
 
Body B.A., Beard M.A., Slechta E.S., Hanson K.E., Barker A.P., Babady N.E., McMillen T., Tang Y.W., Brown-Elliott B.A., Iakhiaeva E., Vasireddy R., Vasireddy S., Smith T., Wallace R.J., Turner S., Curtis L., Butler-Wu S., Rychert J. (2018): Evaluation of the Vitek MS v3.0 matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Mycobacterium and Nocardia species. Journal of Clinical Microbiology, 56: e00237-18.
 
Bond C., Brown D., Freise A., Strain K.A. (2016): Interferometer techniques for gravitational-wave detection. Living Reviews in Relativity, 19: 1–217. https://doi.org/10.1007/s41114-016-0002-8
 
Boros-Major A., Bona A., Lovasz G., Molnar E., Marcsik A., Palfi G., Mark L. (2011): New perspectives in biomolecular paleopathology of ancient tuberculosis: A proteomic approach. Journal of Archaeological Science, 38: 197–201. https://doi.org/10.1016/j.jas.2010.09.008
 
Bownds S., Kurzynski T.A., Norden M.A., Dufek J.L., Schell R.F. (1996): Rapid susceptibility testing for nontuberculosis mycobacteria using flow cytometry. Journal of Clinical Microbiology, 34: 1386–1390. https://doi.org/10.1128/jcm.34.6.1386-1390.1996
 
Brehm-Stecher B.F. (2008): Methods for whole cell detection of microorganisms. In: Camesano T., Mello C. (eds.): Microbial Surfaces. Washington, DC, USA, ACS Symposium Series, American Chemical Society: 29–51.
 
Broyer P., Perrot N., Rostaing H., Blaze J., Pinston F., Gervasi G., Charles M.H., Dachaud F., Dachaud J., Moulin F., Cordier S., Dauwalder O., Meugnier H., Vandenesch F. (2018): An automated sample preparation instrument to accelerate positive blood cultures microbial identification by MALDI-TOF mass spectrometry (Vitek® MS). Frontiers in Microbiology, 9: 1–14. https://doi.org/10.3389/fmicb.2018.00911
 
Bryson A.L., Hill E.M., Doern C.D. (2019): Matrix-assisted laser desorption/ionization time-of-flight: The revolution in progress. Clinics in Laboratory Medicine, 39: 391–403. https://doi.org/10.1016/j.cll.2019.05.010
 
Buijtels P.C.A.M., Willemse-Erix H.F.M., Petit P.L.C., Endtz H.P., Puppels G.J., Verbrugh H.A., Van Belkum A., van Soolingen D., Maquelin K. (2008): Rapid identification of mycobacteria by Raman spectroscopy. Journal of Clinical Microbiology, 46: 961–965. https://doi.org/10.1128/JCM.01763-07
 
Bumbrah G.S., Sharma R.M. (2016): Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egyptian Journal of Forensic Sciences, 6: 209–215. https://doi.org/10.1016/j.ejfs.2015.06.001
 
Carlos C., Maretto D.A., Poppi R.J., Sato M.I.Z., Ottoboni L.M.M. (2011): Fourier transform infrared microspectroscopy as a bacterial source tracking tool to discriminate fecal E. coli strains. Microchemical Journal, 99: 15–19. https://doi.org/10.1016/j.microc.2011.03.002
 
Carroll P., Muwanguzi-Karugaba J., Melief E., Files M., Parish T. (2014): Identification of the translational start site of codon-optimized mCherry in Mycobacterium tuberculosis. BMC Research Notes, 7: 366–401. https://doi.org/10.1186/1756-0500-7-366
 
Castro-Escarpulli G., Alonso-Aguilar N.M., Rivera Sánchez G., Bocanegra-Garcia V., Guo X., Juárez-Enríquez S.R., Luna-Herrera J., Martínez C.M., Aguilera-Arreola M.Q. (2015): Identification and typing methods for the study of bacterial infections: A brief review and mycobacterial as case of study. Archives of Clinical Microbiology, 7: 1–3.
 
Ceyssens P.J., Soetaert K., Timke M., Van den Bossche A., Sparbier K., De Cremer K., Kostrzewa M., Hendrickx M., Mathys V. (2017): Matrix-assisted laser desorption ionization-time of flight mass spectrometry for combined species identification and drug sensitivity testing in mycobacteria. Journal of Clinical Microbiology, 55: 624–634. https://doi.org/10.1128/JCM.02089-16
 
Chan S., Pullerits K., Keucken A., Perssonz K.M., Paul C.J., Radstrom P. (2019): Bacterial release from pipe biofilm in a full-scale drinking water distribution system. Nature Partner Journals (npj) – Biofilms and Microbiomes, 5: 1–8. https://doi.org/10.1038/s41522-019-0082-9
 
Chang S.C., Adriaens P. (2007): Nano-immunodetection and quantification of mycobacteria in metalworking fluids. Environmental Engineering Science, 24: 58–72. https://doi.org/10.1089/ees.2007.24.58
 
Chang S.C., Anderson T.I., Bahrman S.E., Gruden C.L., Khijniak A.I., Adriaens P. (2005): Comparing recovering efficiency of immunomagnetic separation and centrifugation of mycobacteria in metalworking fluids. Journal of Industrial Microbiology and Biotechnology, 32: 629–638. https://doi.org/10.1007/s10295-005-0238-x
 
Costa M.P., Andrade C.A.S., Montenegro R.A., Melo F.L., Oliveira M.D.L. (2014): Self-assembled monolayers of mercaptobenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor. Journal of Colloid and Interface Science, 433: 141–148. https://doi.org/10.1016/j.jcis.2014.07.014
 
Costa P., Amaro A., Botelho A., Inacio J., Baptista P.V. (2010): Gold nanoprobe assay for the identification of mycobacteria of the Mycobacterium tuberculosis complex. Clinical Microbiology and Infection, 16: 1464–1469. https://doi.org/10.1111/j.1469-0691.2010.03120.x
 
Costa-Alcalde J.J., Barbeito-Castineiras G., Gonzalez-Alba J.M., Aguilera A., Galan J.C., Perez-del-Molino M.L. (2019): Comparative evaluation of the identification of rapidly growing non-tuberculous mycobacteria by mass spectrometry (MALDI-TOF MS), GenoType Mycobacterium CM/AS assay and partial sequencing of the rpo beta gene with phylogenetic analysis as a reference method. Enfermedades Infecciosas y Microbiologia Clinica, 37: 160–166. https://doi.org/10.1016/j.eimc.2018.04.012
 
Cowan L.S., Mosher L., Diem L., Massey J.P., Crawford J.T. (2002): Variable-number-tandem repeat typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 by using mycobacterial interspersed repetitive units. Journal of Clinical Microbiology, 40: 1592–1602. https://doi.org/10.1128/JCM.40.5.1592-1602.2002
 
de Macedo C.S., Anderson D.M., Pascarelli B.M., Spraggins J.M., Sarno E.N., Schey K.L., Pessolani M.C.V. (2015): MALDI imaging reveals lipid changes in the skin of leprosy patients before and after multidrug therapy (MDT). Journal of Mass Spectrometry, 50: 1374–1385. https://doi.org/10.1002/jms.3708
 
Di Gaudio F., Indelicato S., Indelicato S., Tricoli M.R., Stampone G., Bongiorno D. (2018): Improvement of a rapid direct blood culture microbial identification protocol using MALDI-TOF MS and performance comparison with SepsiTyper kit. Journal of Microbiological Methods, 155: 1–7. https://doi.org/10.1016/j.mimet.2018.10.015
 
Dina N.E., Colnita A., Szoke-Nagy T., Porav A.S. (2017): A critical review on ultrasensitive, spectroscopic-based methods for high-throughput monitoring of bacteria during infection treatment. Critical Reviews in Analytical Chemistry, 47: 499–512. https://doi.org/10.1080/10408347.2017.1332974
 
Diouani M.F., Ouerghi O., Refai A., Belgacem K., Tlili C., Laouini D., Essafi M. (2017): Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis. Materials Science & Engineering C-Materials for Biological Applications, 74: 465–470.
 
Dupont D. (2011): Immunochemical methods. In: Dupont D. (ed.): Analytical Methods | Immunochemical Methods. Encyclopedia of Dairy Sciences. Waltham, USA, Elsevier: 177–184.
 
Eberhardt K., Stiebing C., Matthaus C., Schmitt M., Popp J. (2015): Advantages and limitations of Raman spectroscopy for molecular diagnostics: An update. Expert Review of Molecular Diagnostics, 15: 773–787. https://doi.org/10.1586/14737159.2015.1036744
 
Egawa T., Yeh S.R. (2005): Structural and functional properties of hemoglobins from unicellular organisms as revealed by resonance Raman spectroscopy. Journal of Inorganic Biochemistry, 99: 72–96. https://doi.org/10.1016/j.jinorgbio.2004.10.017
 
El Khechine A., Couderc C., Flaudrops C., Raoult D., Drancourt M. (2011): Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of mycobacteria in routine clinical practice. Plos One, 6: e24720. https://doi.org/10.1371/journal.pone.0024720
 
Epperson L.E., Timke M., Hasan N.A., Godo P., Durbin D., Helstrom N.K., Shi G., Kostrzewa M., Strong M., Salfinger M. (2018): Evaluation of a novel MALDI Biotyper algorithm to distinguish Mycobacterium intracellulare from Mycobacterium chimaera. Frontiers in Microbiology, 9: 1–6. https://doi.org/10.3389/fmicb.2018.03140
 
Erokhina M.V., Nezlin L.P., Avdienko V.G., Voronezhska E.E., Lepekha L.N. (2016): Immunohistochemical detection of Mycobacterium tuberculosis in tissues of consumptives using laser scanning microscopy. Biology Bulletin, 43: 21–25. https://doi.org/10.1134/S1062359016010052
 
Falkinham J.O. (2009): Surrounded by mycobacteria: Nontuberculous mycobacteria in the human environment. Journal of Applied Microbiology, 107: 356–367. https://doi.org/10.1111/j.1365-2672.2009.04161.x
 
Falkinham J.O. (2011): Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerging Infectious Diseases, 17: 419–424. https://doi.org/10.3201/eid1703.101510
 
Fangous M.S., Mougari F., Gouriou S., Calvez E., Raskine L., Cambau E., Payan C., Hery-Arnaud G. (2014): Classification algorithm for subspecies identification within the Mycobacterium abscessus species, based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology, 52: 3362–3369. https://doi.org/10.1128/JCM.00788-14
 
Fernandez R.E., Rohani A., Farmehini V., Swami N.S. (2017): Review: Microbial analysis in dielectrophoretic microfluidic systems. Analytica Chimica Acta, 966: 11–33. https://doi.org/10.1016/j.aca.2017.02.024
 
Fuller K., Linden M.D., Lee-Pullen T., Fragall C., Erber W.N., Rohrig K.J. (2016): An active, collaborative approach to learning skills in flow cytometry. Advances in Physiology Education, 40: 176–185. https://doi.org/10.1152/advan.00002.2015
 
Ganareal T.A.C.S., Balbin M.M., Monserate J.J., Salazar J.R., Mingala C.N. (2018): Gold nanoparticle-based probes for the colorimetric detection of Mycobacterium avium subspecies paratuberculosis DNA. Biochemical and Biophysical Research Communications, 496: 988–997. https://doi.org/10.1016/j.bbrc.2018.01.033
 
Gasol J.M., Del Giorgio P.A. (2000): Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Scientia Marina, 64: 197–224. https://doi.org/10.3989/scimar.2000.64n2197
 
Genc G.E., Demir M., Yaman G., Kayar B., Koksal F., Satana D. (2018): Evaluation of MALDI-TOF MS for identification of nontuberculous mycobacteria isolated from clinical specimens in mycobacteria growth indicator tube medium. New Microbiologica, 41: 214–219.
 
Glazer C.S., Martyny J.W., Lee B., Sanchez T.L., Sells T.M., Newman L.S., Murphy J., Heifets L., Rose C.S. (2007): Nontuberculous mycobacteria in aerosol droplets and bulk water samples from therapy pools and hot tubs. Journal of Occupational and Environmental Hygiene, 4: 831–840. https://doi.org/10.1080/15459620701634403
 
Gopinath S.C.B., Perumal V., Kumaresan R., Lakshmipriya T., Rajintraprasad H., Rao B.S., Arshad M.K.M., Chen Y., Kotani N., Hashim U. (2016): Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis. Microchimica Acta, 183: 2697–2703. https://doi.org/10.1007/s00604-016-1911-7
 
Gopinath S.C.B., Tang T.H., Chen Y., Citartan M., Lakshmipriya T. (2014): Bacterial detection: From microscope to smartphone. Biosensors & Bioelectronics, 60: 332–342.
 
Gori A., Bandera A., Marchetti G., Esposti A.D., Catozzi L., Nardi G.P., Gazzola L., Ferrario G., van Embden J.D.A., van Soolingen D., Moroni M., Franzetti F. (2005): Spoligotyping and Mycobacterium tuberculosis. Emerging Infectious Diseases, 11: 1242–1248. https://doi.org/10.3201/eid1108.040982
 
Grenot P., Luche H. (2020): Beadless absolute counting. Application of the unique properties of the peristaltic pump fluidic based system for volumetric cell counting. Beckman Coulter, Life Sciences (White Paper). Available at https://www.beckman.com/gated-media?mediaId={59BBD0A5-8262-4A5E-94E5-6D0D7DF59652} (accessed Mar, 2020).
 
Gruden C., Skerlos S., Adriaens P. (2004): Flow cytometry for microbial sensing in environmental sustainability applications: Current status and future prospects. Fems Microbiology Ecology, 49: 37–49. https://doi.org/10.1016/j.femsec.2004.01.014
 
Gupta R.S., Lo B., Son J. (2018): Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Frontiers in Microbiology, 9: 1–41. https://doi.org/10.3389/fmicb.2018.00067
 
Hajdu T., Fothi E., Kovari I., Merczi M., Molnar A., Maasz G., Avar P., Marcsik A., Mark L. (2012): Bone tuberculosis in Roman Period Pannonia (western Hungary). Memorias do Instituto Oswaldo Cruz, 107: 1048–1053. https://doi.org/10.1590/S0074-02762012000800014
 
Hamid M.E., Fraser J.L., Wallace P.A., Besra G.S., Goodfellow M., Minnikin D.E., Ridell M. (1993): Antigenic glycolipids of Mycobacterium fortuitum based on trehalose acylated with 2-methyloctadec-2-enoic acid. Letters in Applied Microbiology, 16: 132–135. https://doi.org/10.1111/j.1472-765X.1993.tb01377.x
 
Hammes F., Berney M., Wang Y., Vital M., Koster O., Egli T. (2008): Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Research, 42: 269–277. https://doi.org/10.1016/j.watres.2007.07.009
 
Hammes F.A., Egli T. (2005): New method for assimilable organic carbon determination using flow-cytometric enumeration and a natural microbial consortium as inoculum. Environmental Science & Technology, 39: 3289–3294.
 
Han Y., Gu Y., Zhang A.C., Lo Y.H. (2016): Review: Imaging technologies for flow cytometry. Lab on a Chip, 16: 4639–4647. https://doi.org/10.1039/C6LC01063F
 
Haridas V., Ranjbar S., Vorobjev I.A., Goldfeld A.E., Barteneva N.S. (2017): Imaging flow cytometry analysis of intracellular pathogens. Methods, 112: 91–104. https://doi.org/10.1016/j.ymeth.2016.09.007
 
Haslam C., Hellicar J., Dunn A., Fuetterer A., Hardy N., Marshall P., Paape R., Pemberton M., Resemannand A., Leveridge M. (2016): The evolution of MALDI-TOF mass spectrometry toward ultra-high-throughput screening: 1536-well format and beyond. Journal of Biomolecular Screening, 21: 176–186. https://doi.org/10.1177/1087057115608605
 
Hayes J.M., Anderson L.C., Schultz J.A., Ugarov M., Egan T.F., Lewis E.K., Womack V., Woods A.S., Jackson S.N., Hauge R.H., Kittrell C., Ripley S., Murray K.K. (2011): Matrix assisted laser desorption ionization ion mobility time-of-flight mass spectrometry of bacteria. In: Fenselau C., Demirev P. (eds.): Rapid Characterization of Microorganisms by Mass Spectrometry. Washington, DC, USA, ACS Symposium Series, American Chemical Society: 143–160.
 
Hendon-Dunn C.L., Doris K.S., Thomas S.R., Allnutt J.C., Marriott A.A.N., Hatch K.A., Watson R.J., Bottley G., Marsh P.D., Taylor S.C., Bacon J. (2016): A flow cytometry method for rapidly assessing Mycobacterium tuberculosis responses to antibiotics with different modes of action. Antimicrobial Agents and Chemotherapy, 60: 3869–3883. https://doi.org/10.1128/AAC.02712-15
 
Hettick J.M., Kashon M.L., Simpson J.P., Siegel P.D., Mazurek G.H., Weissman D.N. (2004): Proteomic profiling of intact mycobacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analytical Chemistry, 76: 5769–5776. https://doi.org/10.1021/ac049410m
 
Hiatt L.A., Cliffel D.E. (2012): Real-time recognition of Mycobacterium tuberculosis and lipoarabinomannan using the quartz crystal microbalance. Sensors and Actuators B: Chemical, 174: 245–252. https://doi.org/10.1016/j.snb.2012.06.095
 
Himmel L.E., Hackett T.A., Moore J.L., Adams W.R., Thomas G., Novitskaya T., Caprioli R. M., Zijlstra A., Mahadevan-Jansen A., Boyd K.L. (2018): Beyond the H&E: Advanced technologies for in situ tissue biomarker imaging. Ilar Journal, 59: 51–65.
 
Hiraiwa M., Kim J.H., Lee H.B., Inoue S., Becker A.L., Weigel K.M., Cangelosi G.A., Lee K.H., Chung J.H. (2015): Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis. Journal of Micromechanics and Microengineering, 25: 055013. https://doi.org/10.1088/0960-1317/25/5/055013
 
Honda J.R., Knight V., Chan E.D. (2015): Pathogenesis and risk factors for nontuberculous mycobacterial lung disease. Clinics in Chest Medicine, 36: 1–11. https://doi.org/10.1016/j.ccm.2014.10.001
 
Hruska K., Cepica A. (2019): The Association of Nontuberculous Mycobacteria with Immune-Mediated Chronic Inflammatory and Autoimmune Diseases: A Call for Action. Brno, Czech Republic, Hruska Publishing: 46.
 
Hruska K., Kaevska M. (2012): Mycobacteria in water, soil, plants and air: A review. Veterinarni Medicina, 57: 623–679. https://doi.org/10.17221/6558-VETMED
 
Hruska K., Pavlik I. (2014): Crohn's disease and related inflammatory diseases: from many single hypotheses to one 'superhypothesis'. Veterinarni Medicina, 59: 583–630. https://doi.org/10.17221/7822-VETMED
 
Humphrey D.M., Weiner M.H. (1987): Mycobacterial antigen-detection by immunohistochemistry in pulmonary tuberculosis. Human Pathology, 18: 701–708. https://doi.org/10.1016/S0046-8177(87)80241-1
 
Inoue S., Becker A.L., Kim J.H., Shu Z.Q., Soelberg S.D., Weigel K.M., Hiraiwa M., Cairns A., Lee H.B., Furlong C.E., Oh K., Lee K.H., Gao D., Chung J.H., Cangelosi G.A. (2014): Semi-automated, occupationally safe immunofluorescence microtip sensor for rapid detection of Mycobacterium cells in sputum. Plos One, 9: e86018. https://doi.org/10.1371/journal.pone.0086018
 
Jang K.S., Kim Y.H. (2018): Rapid and robust MALDI-TOF MS techniques for microbial identification: A brief overview of their diverse applications. Journal of Microbiology, 56: 209–216. https://doi.org/10.1007/s12275-018-7457-0
 
Kaelin M.B., Kuster S.P., Hasse B., Schulthess B., Imkamp F., Halbe M., Sander P., Sax H., Schreiber P.W. (2020): Diversity of nontuberculous mycobacteria in heater-cooler devices – Results from prospective surveillance. The Journal of Hospital Infection, 105: 480–485. https://doi.org/10.1016/j.jhin.2020.03.006
 
Kim B.J., Kim B.R., Jeong J., Lim J.H., Park S.H., Lee S.H., Kim C.K., Kook Y.H., Kim B.J. (2018): A description of Mycobacterium chelonae subsp. gwanakae subsp. nov., a rapidly growing Mycobacterium with a smooth colony phenotype due to glycopeptidolipids. International Journal of Systematic and Evolutionary Microbiology, 68: 3772–3780. https://doi.org/10.1099/ijsem.0.003056
 
Kim J., Hong S.C., Hong J.C., Chang C.L., Park T.J., Kim H.J., Lee J. (2015): Clinical immunosensing of tuberculosis CFP-10 antigen in urine using interferometric optical fiber array. Sensors and Actuators B-Chemical, 216: 184–191. https://doi.org/10.1016/j.snb.2015.04.046
 
Kliem M., Sauer S. (2012): The essence on mass spectrometry based microbial diagnostics. Current Opinion in Microbiology, 15: 397–402. https://doi.org/10.1016/j.mib.2012.02.006
 
Kotlarz N., Rockey N., Olson T.M., Haig S.J., Sanford L., Lipuma J.J., Raskin L. (2018): Biofilms in full-scale drinking water ozone contactors contribute viable bacteria to ozonated water. Environmental Science & Technology, 52: 2618–2628.
 
Kuckuck F.W., Edwards B.S., Sklar L.A. (2001): High throughput flow cytometry. Cytometry, 44: 83–90. https://doi.org/10.1002/1097-0320(20010501)44:1<83::AID-CYTO1085>3.0.CO;2-O
 
Kuehl R., Banderet F., Egli A., Keller P.M., Frei R., Dobele T., Eckstein F., Widmer A.F. (2018): Different types of heater-cooler units and their risk of transmission of Mycobacterium chimaera during open-heart surgery: Clues from device design. Infection Control and Hospital Epidemiology, 39: 834–840. https://doi.org/10.1017/ice.2018.102
 
Kumanan V., Nugen S.R., Baeumner A.J., Chang Y.F. (2009): A biosensor assay for the detection of Mycobacterium avium subsp paratuberculosis in fecal samples. Journal of Veterinary Science, 10: 35–42. https://doi.org/10.4142/jvs.2009.10.1.35
 
Lange J.L., Thorne P.S., Lynch N. (1997): Application of flow cytometry and fluorescent in situ hybridization for assessment of exposures to airborne bacteria. Applied and Environmental Microbiology, 63: 1557–1563. https://doi.org/10.1128/aem.63.4.1557-1563.1997
 
Larrouy-Maumus G., Puzo G. (2015): Mycobacterial envelope lipids fingerprint from direct MALDI-TOF MS analysis of intact bacilli. Tuberculosis, 95: 75–85. https://doi.org/10.1016/j.tube.2014.11.001
 
Laval F., Laneelle M.A., Deon C., Monsarrat B., Daffe M. (2001): Accurate molecular mass determination of mycolic acids by MALDI-TOF mass spectrometry. Analytical Chemistry, 73: 4537–4544. https://doi.org/10.1021/ac0105181
 
Law J.W.F., Ab Mutalib N.S., Chan K.G., Lee L.H. (2015): Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Frontiers in Microbiology, 5: 1–19. https://doi.org/10.3389/fmicb.2014.00770
 
Lee H., Yoon TJ., Weissleder R. (2009): Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. Angewandte Chemie-International Edition, 48: 5657–5660. https://doi.org/10.1002/anie.200901791
 
Lee J., Adegoke O., Park E.Y. (2019): High-performance biosensing systems based on various nanomaterials as signal transducers. Biotechnology Journal, 14: 1800249. https://doi.org/10.1002/biot.201800249
 
Lin C.S., Su C.C., Hsieh S.C., Lu C.C., Wu T.L., Jia J.H., Wu T.S., Han C.C., Tsai W.C., Lu J.J., Lai H.C. (2015): Rapid identification of Mycobacterium avium clinical isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Microbiology Immunology and Infection, 48: 205–212. https://doi.org/10.1016/j.jmii.2013.08.008
 
Liong M., Hoang A.N., Chung J., Gural N., Ford C.B., Min C., Shah R.R., Ahmad R., Fernandez-Suarez M., Fortune S.M., Toner M., Lee H., Weissleder R. (2013): Magnetic barcode assay for genetic detection of pathogens. Nature Communications, 4: 1752. https://doi.org/10.1038/ncomms2745
 
Liu C., Jiang D.N., Xiang G.M., Liu L.L., Liu F., Pu X.Y. (2014): An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle-polyaniline nanocomposite. Analyst, 139: 5460–5465. https://doi.org/10.1039/C4AN00976B
 
Liu T.T., Kong W.W., Chen N., Zhu J., Wang J.Q., He X.Q., Jin Y. (2016): Bacterial characterization of Beijing drinking water by flow cytometry and MiSeq sequencing of the 16S rRNA gene. Ecology and Evolution, 6: 923–934. https://doi.org/10.1002/ece3.1955
 
Lorenz B., Wichmann C., Stockel S., Rosch P., Popp J. (2017): Cultivation-free Raman spectroscopic investigations of bacteria. Trends in Microbiology, 25: 413–424. https://doi.org/10.1016/j.tim.2017.01.002
 
Lu C.Y., Egawa T., Mukai M., Poole R.K., Yeh S.R. (2008): Hemoglobins from Mycobacterium tuberculosis and Campylobacter jejuni: A comparative study with resonance Raman spectroscopy. Globins and Other Nitric Oxide-Reactive Proteins, Part B, 437: 255–286.
 
Machen A., Kobayashi M., Connelly M.R., Wang Y.F. (2013): Comparison of heat inactivation and cell disruption protocols for identification of mycobacteria from solid culture media by use of Vitek matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology, 51: 4226–4229. https://doi.org/10.1128/JCM.02612-13
 
Marin P.A., Botero L.E., Robledo J.A., Murillo A.M., Torres R.A., Montagut Y.J., Pabon E., Jaramillo M. (2015): Mycobacterium tuberculosis 38 kDa antigen purification and potential diagnostic use by piezoelectric immunosensors. Acta Biologica Colombiana, 20: 129–139. https://doi.org/10.15446/abc.v20n1.40731
 
Mark L., Patonai Z., Vaczy A., Lorand T., Marcsik A. (2010): High-throughput mass spectrometric analysis of 1400-year-old mycolic acids as biomarkers for ancient tuberculosis infection. Journal of Archaeological Science, 37: 302–305. https://doi.org/10.1016/j.jas.2009.09.041
 
Marquetoux N., Ridler A., Heuer C., Wilson P. (2019): What counts? A review of in vitro methods for the enumeration of Mycobacterium avium subsp. paratuberculosis. Veterinary Microbiology, 230: 265–272. https://doi.org/10.1016/j.vetmic.2019.02.011
 
Mather C.A., Rivera S.F., Butler-Wu S.M. (2014): Comparison of the Bruker biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of mycobacteria using simplified protein extraction protocols. Journal of Clinical Microbiology, 52: 130–138. https://doi.org/10.1128/JCM.01996-13
 
Matsishin M., Rachkov A., Errachid A., Dzyadevych S., Soldatkin A. (2016): Development of impedimetric DNA biosensor for selective detection and discrimination of oligonucleotide sequences of the rpoB gene of Mycobacterium tuberculosis. Sensors and Actuators B-Chemical, 222: 1152–1158. https://doi.org/10.1016/j.snb.2015.08.012
 
McNerney R., Daley P. (2011): Towards a point-of-care test for active tuberculosis: Obstacles and opportunities. Nature Reviews Microbiology, 9: 204–213. https://doi.org/10.1038/nrmicro2521
 
McNerney R., Wondafrash B.A., Amena K., Tesfaye A., McCash E.M., Murray N.J. (2010): Field test of a novel detection device for Mycobacterium tuberculosis antigen in cough. BMC Infectious Diseases, 10: 1–6. https://doi.org/10.1186/1471-2334-10-161
 
McPartlin D.A., O'Kennedy R.J. (2014): Point-of-care diagnostics, a major opportunity for change in traditional diagnostic approaches: Potential and limitations. Expert Review of Molecular Diagnostics, 14: 979–998. https://doi.org/10.1586/14737159.2014.960516
 
Mediavilla-Gradolph M.C., De Toro-Peinado I., Bermudez-Ruiz M.P., Garcia-Martinez M.D., Ortega-Torres M., Quezel-Guerraz N.M., Palop-Borras B. (2015): Use of MALDI-TOF MS for identification of nontuberculous Mycobacterium species isolated from clinical specimens. Biomed Research International, 2015: 1–6. https://doi.org/10.1155/2015/854078
 
Michno W., Wehrli P.M., Blennow K., Zetterberg H., Hanrieder J. (2019): Molecular imaging mass spectrometry for probing protein dynamics in neurodegenerative disease pathology. Journal of Neurochemistry, 151: 488–506. https://doi.org/10.1111/jnc.14559
 
Minero G.A.S., Tefiku E., Garbarino F., Fock J., Hansen M.F. (2020): On-chip DNA analysis of tuberculosis based on magnetic nanoparticle clustering induced by rolling circle amplification products. IEEE Magnetics Letters, 11: 3100105. https://doi.org/10.1109/LMAG.2019.2959545
 
Miodek A., Mejri N., Gomgnimbou M., Sola C., Korri-Youssoufi H. (2015): E-DNA sensor of Mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM). Analytical Chemistry, 87: 9257–9264. https://doi.org/10.1021/acs.analchem.5b01761
 
Mobed A., Baradaran B., de la Guardia M., Agazadeh M., Hasanzadeh M., Rezaee M.A., Mosafer J., Mokhtarzadeh A., Hamblin M.R. (2019): Advances in detection of fastidious bacteria: From microscopic observation to molecular biosensors. TrAC – Trends in Analytical Chemistry, 113: 157–171. https://doi.org/10.1016/j.trac.2019.02.012
 
Monteiro J.T.C., Lima K.V.B., Barretto A.R., Furlaneto I.P., Goncalves G.M., da Costa A.R.F., Lopes M.L., Dalcolmo M.P. (2018): Clinical aspects in patients with pulmonary infection caused by mycobacteria of the Mycobacterium abscessus complex, in the Brazilian Amazon. Jornal Brasileiro de Pneumologia, 44: 93–98. https://doi.org/10.1590/s1806-37562016000000378
 
Moreno E., Miller E., Miller E., Totty H., Deol P. (2018): A novel liquid media mycobacteria extraction method for MALDI-TOF MS identification using VITEK® MS. Journal of Microbiological Methods, 144: 128–133. https://doi.org/10.1016/j.mimet.2017.11.016
 
Mosier-Boss P.A. (2017): Review on SERS of bacteria. Biosensors-Basel, 7: 1–26. https://doi.org/10.3390/bios7040051
 
Muhlig A., Bocklitz T., Labugger I., Dees S., Henk S., Richter E., Andres S., Merker M., Stockel S., Weber K., Cialla-May D., Popp J. (2016): LOC-SERS: A promising closed system for the identification of mycobacteria. Analytical Chemistry, 88: 7998–8004. https://doi.org/10.1021/acs.analchem.6b01152
 
Murphy B., Dempsey E. (2020): Evaluation of an Ag85B immunosensor with potential for electrochemical Mycobacterium tuberculosis diagnostics. ECS Journal of Solid State Science and Technology, 9: 115011. https://doi.org/10.1149/2162-8777/aba993
 
Mustafa T., Wiker H.G., Mfinanga S.G.M., Morkve O., Sviland L. (2006): Immunohistochemistry using a Mycobacterium tuberculosis complex specific antibody for improved diagnosis of tuberculous lymphadenitis. Modern Pathology, 19: 1606–1614. https://doi.org/10.1038/modpathol.3800697
 
Nagy G., Lorand T., Patonai Z., Montsko G., Bajnoczky I., Marcsik A., Mark L. (2008): Analysis of pathological and non-pathological human skeletal remains by FT-IR spectroscopy. Forensic Science International, 175: 55–60. https://doi.org/10.1016/j.forsciint.2007.05.008
 
Nasseri B., Soleimani N., Rabiee N., Kalbasi A., Karimi M., Hamblin M.R. (2018): Point-of-care microfluidic devices for pathogen detection. Biosensors and Bioelectronics, 117: 112–128. https://doi.org/10.1016/j.bios.2018.05.050
 
Neumann A.C., Bauer D., Hoelscher M., Haisch C., Wieser A. (2019): Identifying dormant growth state of mycobacteria by orthogonal analytical approaches on a single cell and ensemble basis. Analytical Chemistry, 91: 881–887. https://doi.org/10.1021/acs.analchem.8b03646
 
Ng B.Y.C., Wee E.J.H., West N.P., Trau M. (2016): Naked-eye colorimetric and electrochemical detection of Mycobacterium tuberculosis – toward rapid screening for active case finding. ACS Sensors, 1: 173–178. https://doi.org/10.1021/acssensors.5b00171
 
Ng B.Y.C., Xiao W., West N.P., Wee E.J.H., Wang Y.L., Trau M. (2015): Rapid, single-cell electrochemical detection of Mycobacterium tuberculosis using colloidal gold nanoparticles. Analytical Chemistry, 87: 10613–10618. https://doi.org/10.1021/acs.analchem.5b03121
 
Nishiuchi Y., Iwamoto T., Maruyama F. (2017): Infection sources of a common non-tuberculous mycobacterial pathogen, Mycobacterium avium complex. Frontiers in Medicine, 4: 1–17. https://doi.org/10.3389/fmed.2017.00027
 
Notermans S., Wernars K. (1991): Immunological methods for detection of foodborne pathogens and their toxins. International Journal of Food Microbiology, 12: 91–102. https://doi.org/10.1016/0168-1605(91)90050-Y
 
Novais A., Freitas A.R., Rodrigues C., Peixe L. (2019): Fourier transform infrared spectroscopy: Unlocking fundamentals and prospects for bacterial strain typing. European Journal of Clinical Microbiology & Infectious Diseases, 38: 427–448.
 
Nunez-Bajo E., Silva Pinto Collins A., Kasimatis M., Cotur Y., Asfour T., Tanriverdi U., Grell M., Kaisti M., Senesi G., Stevenson K., Guder F. (2020): Disposable silicon-based all-in-one micro-qPCR for apid on-site detection of pathogens. Nature Communications, 11: 6176. https://doi.org/10.1038/s41467-020-19911-6
 
Nurmalasari R., Yohan, Gaffar S., Hartati Y.W. (2015): Label-free electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis using gold electrode modified by self-assembled monolayer of thiol. Procedia Chemistry, 17: 111–117. https://doi.org/10.1016/j.proche.2015.12.119
 
Parikh S.J., Goyne K.W., Margenot A.J., Mukome F.N.D., Calderon F.J. (2014): Soil chemical insights provided through vibrational spectroscopy. Advances in Agronomy, 126: 1–148.
 
Park J.S., Choi S.H., Hwang S.M., Hong Y.J., Kim T.S., Park K.U., Song J., Kim E.C. (2016): The impact of protein extraction protocols on the performance of currently available MALDI-TOF mass spectrometry for identification of mycobacterial clinical isolates cultured in liquid media. Clinica Chimica Acta, 460: 190–195. https://doi.org/10.1016/j.cca.2016.06.039
 
Pashchenko O., Shelby T., Banerjee T., Santra S. (2018): A comparison of optical, electrochemical, magnetic, and colorimetric point-of-care biosensors for infectious disease diagnosis. ACS Infectious Diseases, 4: 1162–1178. https://doi.org/10.1021/acsinfecdis.8b00023
 
Patel R. (2015): MALDI-TOF MS for the diagnosis of infectious diseases. Clinical Chemistry, 61: 100–111. https://doi.org/10.1373/clinchem.2014.221770
 
Pence I., Mahadevan-Jansen A. (2016): Clinical instrumentation and applications of Raman spectroscopy. Chemical Society Reviews, 45: 1958–1979. https://doi.org/10.1039/C5CS00581G
 
Perkins S.D., Mayfield J., Fraser V., Angenent L.T. (2009): Potentially pathogenic bacteria in shower water and air of a stem cell transplant unit. Applied and Environmental Microbiology, 75: 5363–5372. https://doi.org/10.1128/AEM.00658-09
 
Pesala B., Gavarna H., Kumar A., Kumaravelu C., Scaria V., Sivasubbu S. (2012): Non-invasive detection of Mycobacterium tuberculosis using IR and NIR spectroscopy. In: Proceedings of the 37th International Conference on Infrared, Millimeter, and Terahertz Waves, IEEE, Wollongong, Australia, Sept 23–28, 2012: 1–2.
 
Pina-Vaz C., Costa-de-Oliveira S., Rodrigues A.G. (2005): Safe susceptibility testing of Mycobacterium tuberculosis by flow cytometry with the fluorescent nucleic acid stain SYTO 16. Journal of Medical Microbiology, 54: 77–81. https://doi.org/10.1099/jmm.0.45627-0
 
Pourakbari R., Shadjou N., Yousefi H., Isildak I., Yousefi M., Rashidi M.R., Khalilzadeh B. (2019): Recent progress in nanomaterial-based electrochemical biosensors for pathogenic bacteria. Microchimica Acta, 186: 1–13. https://doi.org/10.1007/s00604-019-3966-8
 
Prabowo B.A., Chang Y.F., Lai H.C., Alom A., Pal P., Lee Y.Y., Chiu N.F., Hatanaka K., Su L.C., Liu K.C. (2018): Rapid screening of Mycobacterium tuberculosis complex (MTBC) in clinical samples by a modular portable biosensor. Sensors and Actuators B-Chemical, 254: 742–748. https://doi.org/10.1016/j.snb.2017.07.102
 
Pranada A.B., Witt E., Bienia M., Kostrzewa M., Timke M. (2017): Accurate differentiation of Mycobacterium chimaera from Mycobacterium intracellulare by MALDI-TOF MS analysis. Journal of Medical Microbiology, 66: 670–677. https://doi.org/10.1099/jmm.0.000469
 
Prest E.I., Hammes F., Kotzsch S., van Loosdrecht M.C., Vrouwenvelder J.S. (2013): Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method. Water Research, 47: 7131–7142. https://doi.org/10.1016/j.watres.2013.07.051
 
Primm T.P., Lucero C.A., Falkinham J.O. (2004): Health impacts of environmental mycobacteria. Clinical Microbiology Reviews, 17: 98–106. https://doi.org/10.1128/CMR.17.1.98-106.2004
 
Puk K., Banach T., Wawrzyniak A., Adaszek L., Zietek J., Winiarczyk S., Guz L. (2018): Detection of Mycobacterium marinum, M. peregrinum, M. fortuitum and M. abscessus in aquarium fish. Journal of Fish Diseases, 41: 153–156. https://doi.org/10.1111/jfd.12666
 
Quesada-Gonzalez D., Merkoci A. (2015): Nanoparticle-based lateral flow biosensors. Biosensors & Bioelectronics, 73: 47–63.
 
Quintelas C., Ferreira E.C., Lopes J.A., Sousa C. (2018): An overview of the evolution of infrared spectroscopy applied to bacterial typing. Biotechnology Journal, 13: 1700449. https://doi.org/10.1002/biot.201700449
 
Ravva S.V., Harden L.A., Sarreal C.Z. (2017): Characterization and differentiation of Mycobacterium avium subsp paratuberculosis from other mycobacteria using matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Frontiers in Cellular and Infection Microbiology, 7: 1–8. https://doi.org/10.3389/fcimb.2017.00297
 
Rebuffo-Scheer C.A., Kirschner C., Staemmler M., Naumann D. (2007): Rapid species and strain differentiation of non-tubercoulous mycobacteria by Fourier-transform infrared micro spectroscopy. Journal of Microbiological Methods, 68: 282–290. https://doi.org/10.1016/j.mimet.2006.08.011
 
Rivera-Betancourt O.E., Karls R., Grosse-Siestrup B., Helms S., Quinn F., Dluhy R.A. (2013): Identification of mycobacteria based on spectroscopic analyses of mycolic acid profiles. Analyst, 138: 6774–6785. https://doi.org/10.1039/c3an01157g
 
Rodriguez-Temporal D., Perez-Risco D., Struzka E.A., Mas M., Alcaide F. (2018): Evaluation of two protein extraction protocols based on freezing and mechanical disruption for identifying nontuberculous mycobacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry from liquid and solid cultures. Journal of Clinical Microbiology, 56: e01548. https://doi.org/10.1128/JCM.01548-17
 
Rotcheewaphan S., Lemon J.K., Desai U.U., Henderson C.M., Zelazny A.M. (2019): Rapid one-step protein extraction method for the identification of mycobacteria using MALDI-TOF MS. Diagnostic Microbiology and Infectious Disease, 94: 355–360. https://doi.org/10.1016/j.diagmicrobio.2019.03.004
 
Rzagalinski I., Volmer D.A. (2017): Quantification of low molecular weight compounds by MALDI imaging mass spectrometry – A tutorial review. Biochimica et Biophysica Acta-Proteins and Proteomics, 1865: 726–739. https://doi.org/10.1016/j.bbapap.2016.12.011
 
Santos M.I., Gerbino E., Tymczyszyn E., Gomez-Zavaglia A. (2015): Applications of infrared and Raman spectroscopies to probiotic investigation. Foods, 4: 283–305. https://doi.org/10.3390/foods4030283
 
Schopf E., Liu Y., Deng J.C., Yang S.Y., Cheng G.H., Chen Y. (2011): Mycobacterium tuberculosis detection via rolling circle amplification. Analytical Methods, 3: 267–273. https://doi.org/10.1039/C0AY00529K
 
Schulze-Röbbecke R. (1993): Mycobacteria in the environment (Mykobakterien in der Umwelt). Immunitat und Infektio, 21: 126–131. (in German)
 
Schulze-Röbbecke R., Fischeder R. (1989): Mycobacteria in biofilms. Zentralblatt fur Hygiene und Umweltmedizin (International journal of hygiene and environmental medicine), 188: 385–390.
 
Selinummi J., Seppala J., Yli-Harja O., Puhakka J.A. (2005): Software for quantification of labeled bacteria from digital microscope images by automated image analysis. Biotechniques, 39: 859–863. https://doi.org/10.2144/000112018
 
Sevilla I.A., Molina E., Elguezabal N., Perez V., Garrido J.M., Justea R.A. (2015): Detection of mycobacteria, Mycobacterium avium subspecies, and Mycobacterium tuberculosis complex by a novel tetraplex real-time PCR assay. Journal of Clinical Microbiology, 53: 930–940. https://doi.org/10.1128/JCM.03168-14
 
Shi H.M., Sun J.J., Han R.R., Ding C.F., Hu F.P., Yu S.N. (2020): The strategy for correcting interference from water in Fourier transform infrared spectrum based bacterial typing. Talanta, 208: 120347. https://doi.org/10.1016/j.talanta.2019.120347
 
Silva L.B., Veigas B., Doria G., Costa P., Inacio J., Martins R., Fortunato E., Baptista P.V. (2011): Portable optoelectronic biosensing platform for identification of mycobacteria from the Mycobacterium tuberculosis complex. Biosensors and Bioelectronics, 26: 2012–2017. https://doi.org/10.1016/j.bios.2010.08.078
 
Sin M.L.Y., Mach K.E., Wong P.K., Liao J.C. (2014): Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Review of Molecular Diagnostics, 14: 225–244. https://doi.org/10.1586/14737159.2014.888313
 
Singhal N., Kumar M., Kanaujia P.K., Virdi J.S. (2015): MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Frontiers in Microbiology, 6: 1–16. https://doi.org/10.3389/fmicb.2015.00791
 
Sivanesan A., Witkowska E., Adamkiewicz W., Dziewit L., Kaminska A., Waluk J. (2014): Nanostructured silver-gold bimetallic SERS substrates for selective identification of bacteria in human blood. Analyst, 139: 1037–1043. https://doi.org/10.1039/c3an01924a
 
SLMB (2012): Determining the total cell count and ratios of high and low nucleic acid content cells in freshwater using flow cytometry. Analysis Method 333.1, the Swiss Food Book (Schweizerische Lebensmittelbuch). Switzerland, Federal Office of Public Health.
 
Smartt A.E., Ripp S. (2011): Bacteriophage reporter technology for sensing and detecting microbial targets. Analytical and Bioanalytical Chemistry, 400: 991–1007. https://doi.org/10.1007/s00216-010-4561-3
 
Smith D.W., Randall H.M., Maclennan A.P., Putney R.K., Rao S.V. (1960): Detection of specific lipids in mycobacteria by infrared spectroscopy. Journal of Bacteriology, 79: 217–229. https://doi.org/10.1128/jb.79.2.217-229.1960
 
Solomon I.H., Johncilla M.E., Hornick J.L., Milner D.A. (2017): The utility of immunohistochemistry in mycobacterial infection: A proposal for multimodality testing. American Journal of Surgical Pathology, 41: 1364–1370. https://doi.org/10.1097/PAS.0000000000000925
 
Soo P.C., Horng Y.T., Chang K.C., Wang J.Y., Hsueh P.R., Chuang C.Y., Lu C.C., Lai H.C. (2009): A simple gold nanoparticle probes assay for identification of Mycobacterium tuberculosis and Mycobacterium tuberculosis complex from clinical specimens. Molecular and Cellular Probes, 23: 240–246. https://doi.org/10.1016/j.mcp.2009.04.006
 
Stockel S., Meisel S., Lorenz B., Kloss S., Henk S., Dees S., Richter E., Andres S., Merker M., Labugger I., Rosch P., Popp J. (2017): Raman spectroscopic identification of Mycobacterium tuberculosis. Journal of Biophotonics, 10: 727–734. https://doi.org/10.1002/jbio.201600174
 
Stockel S., Stanca A.S., Helbig J., Rosch P., Popp J. (2015): Raman spectroscopic monitoring of the growth of pigmented and non-pigmented mycobacteria. Analytical and Bioanalytical Chemistry, 407: 8919–8923. https://doi.org/10.1007/s00216-015-9031-5
 
Tang M.J., Mcewen G.D., Wu Y.Z., Miller C.D., Zhou A.H. (2013): Characterization and analysis of mycobacteria and Gram-negative bacteria and co-culture mixtures by Raman microspectroscopy, FTIR, and atomic force microscopy. Analytical and Bioanalytical Chemistry, 405: 1577–1591. https://doi.org/10.1007/s00216-012-6556-8
 
Thiruppathiraja C., Kamatchiammal S., Adaikkappan P., Santhosh D.J., Alagar M. (2011): Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Analytical Biochemistry, 417: 73–79. https://doi.org/10.1016/j.ab.2011.05.034
 
Torres-Chavolla E., Alocilja E.C. (2011): Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Biosensors & Bioelectronics, 26: 4614–4618.
 
Tortoli E. (2006): The new mycobacteria: An update. FEMS Immunology and Medical Microbiology, 48: 159–178. https://doi.org/10.1111/j.1574-695X.2006.00123.x
 
Torvinen E., Torkko P., Nevalainen A., Rintala H. (2010): Real-time PCR detection of environmental mycobacteria in house dust. Journal of Microbiological Methods, 82: 78–84. https://doi.org/10.1016/j.mimet.2010.04.007
 
Tseng S.P., Teng S.H., Lee P.S., Wang C.F., Yu J.S., Lu P.L. (2013): Rapid identification of M. abscessus and M. massiliense by MALDI-TOF mass spectrometry with a comparison to sequencing methods and antimicrobial susceptibility patterns. Future Microbiology, 8: 1381–1389. https://doi.org/10.2217/fmb.13.115
 
Vaerewijck M.J.M., Huys G., Palomino J.C., Swings J., Portaels F. (2005): Mycobacteria in drinking water distribution systems: Ecology and significance for human health. FEMS Microbiology Reviews, 29: 911–934. https://doi.org/10.1016/j.femsre.2005.02.001
 
Van Belkum A., Durand G., Peyret M., Chatellier S., Zambardi G., Schrenzel J., Shortridge D., Engelhardt A., Dunne W.M. (2013): Rapid clinical bacteriology and its future impact. Annals of Laboratory Medicine, 33: 14–27. https://doi.org/10.3343/alm.2013.33.1.14
 
Van Emon J.M. (2011): Immunoassays in biotechnology. In: Moo-Young M. (ed.): The Elsevier Encyclopedia: Comprehensive Biotechnology. 2nd Ed. Amsterdam, Netherlands, Elsevier BV: 659–667.
 
Van Nevel S., Buysschaert B., De Roy K., De Gusseme B., Clement L., Boon N. (2017a): Flow cytometry for immediate follow-up of drinking water networks after maintenance. Water Research, 111: 66–73. https://doi.org/10.1016/j.watres.2016.12.040
 
Van Nevel S., Koetzsch S., Proctor C.R., Besmer M.D., Prest E.I., Vrouwenvelder J.S., Knezev A., Boon N., Hammes F. (2017b): Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. Water Research, 113: 191–206. https://doi.org/10.1016/j.watres.2017.01.065
 
Vanhauteghem D., Audenaert K., Demeyere K., Hoogendoorn F., Janssens G.P.J., Meyer E. (2019): Flow cytometry, a powerful novel tool to rapidly assess bacterial viability in metal working fluids: Proof-of-principle. Plos One, 14: e0211583. https://doi.org/10.1371/journal.pone.0211583
 
Veigas B., Jacob J.M., Costa M.N., Santos D.S., Viveiros M., Inacio J., Martins R., Barquinha P., Fortunato E., Baptista P.V. (2012): Gold on paper-paper platform for Au-nanoprobe TB detection. Lab on a Chip, 12: 4802–4808. https://doi.org/10.1039/c2lc40739f
 
Verstijnen C.P.H.J., Ly H.M., Polman K., Richter C., Smits S.P., Maselle S.Y., Peerbooms P., Rienthong D., Montreewasuwat N., Koanjanart S., Trach D.D., Kuijper S., Kolk A.H.J. (1991): Enzyme-linked-immunosorbent-assay using monoclonal-antibodies for identification of mycobacteria from early cultures. Journal of Clinical Microbiology, 29: 1372–1375. https://doi.org/10.1128/jcm.29.7.1372-1375.1991
 
Vives-Rego J., Lebaron P., Nebe-von Caron G. (2000): Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiology Reviews, 24: 429–448. https://doi.org/10.1111/j.1574-6976.2000.tb00549.x
 
Walch A., Rauser S., Deininger S.O., Hofler H. (2008): MALDI imaging mass spectrometry for direct tissue analysis: A new frontier for molecular histology. Histochemistry and Cell Biology, 130: 421–434. https://doi.org/10.1007/s00418-008-0469-9
 
Wang Y., Hammes F., Boon N., Egli T. (2007): Quantification of the filterability of freshwater bacteria through 0.45, 0.22, and 0.1 microm pore size filters and shape-dependent enrichment of filterable bacterial communities. Environmental Science & Technology, 41: 7080–7086.
 
Wang Y.Y., Hammes F., De Roy K., Verstraete W., Boon N. (2010): Past, present and future applications of flow cytometry in aquatic microbiology. Trends in Biotechnology, 28: 416–424. https://doi.org/10.1016/j.tibtech.2010.04.006
 
Wayengera M., Mwebaza I., Welishe J., Bayiyana A., Kateete D.P., Wampande E., Kirimunda S., Kigozi E., Katabazi F., Musubika C., Kyobe S., Babirye P., Asiimwe B., Joloba M.L. (2020): Immuno-diagnosis of Mycobacterium tuberculosis in sputum, and reduction of timelines for its positive cultures to within 3 h by pathogen-specific thymidylate kinase expression assays. BioMed Central Research Notes, 10: 1–13.
 
Welker M., Van Belkum A., Girard V., Charrier J.P., Pincus D. (2019): An update on the routine application of MALDI-TOF MS in clinical microbiology. Expert Review of Proteomics, 16: 695–710. https://doi.org/10.1080/14789450.2019.1645603
 
Wenning M., Scherer S. (2013): Identification of microorganisms by FTIR spectroscopy: Perspectives and limitations of the method. Applied Microbiology and Biotechnology, 97: 7111–7120. https://doi.org/10.1007/s00253-013-5087-3
 
Winder C.L., Gordon S.V., Dale J., Hewinson R.G., Goodacre R. (2006): Metabolic fingerprints of Mycobacterium bovis cluster with molecular type: Implications for genotype-phenotype links. Microbiology, 152: 2757–2765. https://doi.org/10.1099/mic.0.28986-0
 
Xiang Y., Deng K., Xia H., Yao C.Y., Chen Q.H., Zhang L.Q., Liu Z.Y., Fu W.L. (2013): Isothermal detection of multiple point mutations by a surface plasmon resonance biosensor with Au nanoparticles enhanced surface-anchored rolling circle amplification. Biosensors & Bioelectronics, 49: 442–449.
 
Xiang Y., Zhu X., Huang Q., Zheng J., Fu W. (2015): Real-time monitoring of Mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor. Biosensors & Bioelectronics, 66: 512–519.
 
Yang F.Y., Chen J.H., Ruan Q.Q., Saqib H.S.A., He W.Y., You M.S. (2020): Mass spectrometry imaging: An emerging technology for the analysis of metabolites in insects. Archives of Insect Biochemistry and Physiology, 103: e21643. https://doi.org/10.1002/arch.21643
 
Zhang C.Q., Song X.Q., Zhao Y., Zhang H., Zhao S.M., Mao F.F., Bai B., Wu S.P., Shi C.H. (2015): Mycobacterium tuberculosis secreted proteins as potential biomarkers for the diagnosis of active tuberculosis and latent tuberculosis infection. Journal of Clinical Laboratory Analysis, 29: 375–382. https://doi.org/10.1002/jcla.21782
 
Zribi B., Roy E., Pallandre A., Chebil S., Koubaa M., Mejri N., Gomez H.M., Sola C., Korri-Youssoufi H., Haghiri-Gosnet A.M. (2016): A microfluidic electrochemical biosensor based on multiwall carbon nanotube/ferrocene for genomic DNA detection of Mycobacterium tuberculosis in clinical isolates. Biomicrofluidics, 10: 014115. https://doi.org/10.1063/1.4940887
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti