Immobilisation of endoinulinase on polyhydroxybutyrate microfibers

https://doi.org/10.17221/72/2016-CJFSCitation:Beran M., Pinkrová J., Urban M., Drahorád J. (2016): Immobilisation of endoinulinase on polyhydroxybutyrate microfibers. Czech J. Food Sci., 34: 541-546.
download PDF
Due to the health benefits associated with the consumption of prebiotic short-chain fructooligosaccharides (sc-FOS) and inulooligosaccharides (IOS), there is increased interest in the use of these compounds in food products. We have developed a new biocatalyst for the production of FOS and IOS by inulin hydrolysis. Endoinulinase from Aspergillus niger Inulinase® Novozym 960 (Novozymes) was immobilised on polyhydroxybutyrate (PHB) nanofibres and microfibres by hydrophobic interactions. The PHB fibres were prepared by centrifugal spinning. FOS and IOS profiles were determined by ion-exchange chromatography with the Rezex RSO-Oligosaccharide column. The biocatalyst had very good activity and stability after repeated applications. It can be used in biocatalytic membrane reactors for the production of prebiotic oligosaccharides.
References:
Ansari Shakeel Ahmed, Husain Qayyum (2012): Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnology Advances, 30, 512-523  https://doi.org/10.1016/j.biotechadv.2011.09.005
 
Baston A., Neagu (Bonciu) C., Bahrim G. (2013): Establishing the optimum conditions for inulin hydrolysis by using commercial inulinase. Revue di Chimie, Académie de la Republique Populaire Roumaine, 64: 649–653.
 
Beran M., Drahorad J., Husek Z., Toman F. (2015): Immobilization of Microorganisms in Fibers. In: Proceedings NANOCON 2014 Conference, Nov 5–7, 2014, Brno, Czech Republic: 594–599.
 
Chi Zhenming, Chi Zhe, Zhang Tong, Liu Guanglei, Yue Lixi (2009): Inulinase-expressing microorganisms and applications of inulinases. Applied Microbiology and Biotechnology, 82, 211-220  https://doi.org/10.1007/s00253-008-1827-1
 
Garlet Tais, Weber Caroline, Klaic Rodrigo, Foletto Edson, Jahn Sergio, Mazutti Marcio, Kuhn Raquel (2014): Carbon Nanotubes as Supports for Inulinase Immobilization. Molecules, 19, 14615-14624  https://doi.org/10.3390/molecules190914615
 
Deepak Venkataraman, Ram Kumar Pandian Suresh babu, Kalishwaralal Kalimuthu, Gurunathan Sangiliyandi (2009): Purification, immobilization, and characterization of nattokinase on PHB nanoparticles. Bioresource Technology, 100, 6644-6646  https://doi.org/10.1016/j.biortech.2009.06.057
 
Karimi M., Chaudhury I., Jianjun C., Safari M., Sadeghi R., Habibi-Rezaei M., Kokini J. (2014a): Immobilization of endo-inulinase on non-porous amino functionalized silica nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 104: 48–55.
 
Karimi H., Habibi-Rezaei M., Safari M., Moosavi-Movahed A.A., Sayyah M., Sadeghi R., Kokini J. (2014b): Immobilization of endo-inulinase on poly-D-lysine coated CaCO3 micro-particles. Food Research International, 66: 485–492.
 
Kim Jungbae, Grate Jay W., Wang Ping (2006): Nanostructures for enzyme stabilization. Chemical Engineering Science, 61, 1017-1026  https://doi.org/10.1016/j.ces.2005.05.067
 
Mendes Adriano A., Oliveira Pedro C., Vélez Ana M., Giordano Roberto C., Giordano Raquel de L.C., de Castro Heizir F. (2012): Evaluation of immobilized lipases on poly-hydroxybutyrate beads to catalyze biodiesel synthesis. International Journal of Biological Macromolecules, 50, 503-511  https://doi.org/10.1016/j.ijbiomac.2012.01.020
 
Missau Juliano, Scheid Amir J, Foletto Edson L, Jahn Sergio L, Mazutti Marcio A, Kuhn Raquel C (2014): Immobilization of commercial inulinase on alginate–chitosan beads. Sustainable Chemical Processes, 2, 13-  https://doi.org/10.1186/2043-7129-2-13
 
Norman B.E., Hojer-Perderson B. (1989): The production of fructooligosaccharides from inulin or sucrose using inulinase or fructosyltransferase from Aspergillus ficuum. Denpun Kagaku, 36: 103–111.
 
Ronkart Sébastien N., Blecker Christophe S., Fourmanoir Hélène, Fougnies Christian, Deroanne Claude, Van Herck Jean-Claude, Paquot Michel (2007): Isolation and identification of inulooligosaccharides resulting from inulin hydrolysis. Analytica Chimica Acta, 604, 81-87  https://doi.org/10.1016/j.aca.2007.07.073
 
Silva Natália C.A., Miranda Jéssica S., Bolina Iara C.A., Silva William C., Hirata Daniela B., de Castro Heizir F., Mendes Adriano A. (2014): Immobilization of porcine pancreatic lipase on poly-hydroxybutyrate particles for the production of ethyl esters from macaw palm oils and pineapple flavor. Biochemical Engineering Journal, 82, 139-149  https://doi.org/10.1016/j.bej.2013.11.015
 
Singh P., Gill P.K. (2006): Production of inulinases: recent advances. Food Technology and Biotechnology, 44: 151–162.
 
Singh A.K., Tank S.K. (2014): Optimization of production of fructooligosaccride using Aureobasidium pullullans. International Journal of Interdisciplinary and Multidisciplinary Studies, 2: 34–41.
 
Vijn I., Smeekens S. (1999): Fructan, more than a reserve carbohydrate? Plant Physiology, 120: 351–360.
 
Yun Jong Won, Kim Dong Hyun, Kim Byung Woo, Song Seung Koo (1997): Production of inulo-oligosaccharides from inulin by immobilized endoinulinase from Pseudomonas sp.. Journal of Fermentation and Bioengineering, 84, 369-371  https://doi.org/10.1016/S0922-338X(97)89263-X
 
Yun Jong Won, Kim Dong Hyun, Yoon Ho Bum, Song Seung Koo (1997): Effect of inulin concentration on the production of inulo-oligosaccharides by soluble and immobilized endoinulinase. Journal of Fermentation and Bioengineering, 84, 365-368  https://doi.org/10.1016/S0922-338X(97)89262-8
 
Yun J. W., Park J. P., Song C. H., Lee C. Y., Kim J. H., Song S. K. (): Continuous production of inulo-oligosaccharides from chicory juice by immobilized endoinulinase. Bioprocess Engineering, 22, 0189-0194  https://doi.org/10.1007/s004490050718
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti