Optimization of divalent metal cations for maximal concentration of Monacolin K in Monascus M1 by response surface methodology

https://doi.org/10.17221/74/2019-CJFSCitation:Lin L., Jiang L., Guo H., Yang L., Liu Z. (2019): Optimization of divalent metal cations for maximal concentration of Monacolin K in Monascus M1 by response surface methodology. Czech J. Food Sci., 37: 312-318.
download PDF

Inorganic salts are important factors in the growth and secondary metabolites production of microorganisms. This study investigated the influences of divalent metal cations, Mn2+, Zn2+, and Mg2+ on the cell growth and Monacolin K production in Monascus M1. Then the concentration of the three kinds of divalent metal cations was optimized by response surface methodology, and the optimum conditions for the highest production of Monacolin K were determined. The optimum concentrations of the three divalent metal ions were selected as follow: Mn2+ 0.33%, Zn2+ 0.16%, and Mg2+ 1%. In this condition the concentration of Monacolin K reached 9.57mg/g which was close to the predicted values, indicating that the model was adequate for the Monacolin K production. The yield of Monacolin K in Monascus can be increased by adding metal ions during industrial production.

References:
Battah M., El-Ayoty Y., Abomohra E.F., El-Ghany S.A. Esmael A. (2015): Effect of Mn2+, Co2+, and H2O2, on biomass and lipids of the green microalga Chlorella vulgaris, as a potential candidate for biodiesel production. Annals of Microbiology, 65: 155–162. https://doi.org/10.1007/s13213-014-0846-7
 
Chu J., Niu W., Zhang S., Zhuang Y., Hu H., Li Y. (2004): Effect of metal ions on the binding of gentamicin to the peptidoglycan of micromonospora echinospora. Process Biochemistry, 39: 1145–1150. https://doi.org/10.1016/S0032-9592(03)00228-0
 
Endo A. (1980): Monacolin K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase. Journal of Antibiotics, 33: 334–336. https://doi.org/10.7164/antibiotics.33.334
 
Hajjaj H., Niederberger P., Duboc P. (2001): Lovastatin biosynthesis by Aspergillus terreus in a chemically defined medium. Applied & Environmental Microbiology, 67: 2596–2602.
 
Haq I.U., Ali S., Qadeer M.A., Iqbal J. (2002): Effect of copper ions on mould morphology and citric acid productivity by Aspergillus niger, using molasses based media. Process Biochemistry, 37: 1085–1090. https://doi.org/10.1016/S0032-9592(01)00322-3
 
Ho B.Y., Pan T.M. (2009): The Monascus metabolite monacolin K reduces tumor progression and metastasis of lewis lung carcinoma cells. Journal of Agricultural & Food Chemistry, 57: 8258–8265.
 
Jia Z., Zhang X., Zhao Y., Cao X. (2009): Effects of divalent metal cations on lovastatin biosynthesis from Aspergillus terreus in chemically defined medium. World Journal of Microbiology & Biotechnology, 25: 1235–1241.
 
Lee C.L., Hung H.K., Wang J.J., Pan T.M. (2007): Improving the ratio of monacolin K to citrinin production of Monascus purpureus NTU 568 under dioscorea medium through the mediation of pH value and ethanol addition. Journal of Agricultural & Food Chemistry, 55: 6493–6502.
 
Lin C.P., Lin Y.L., Huang P.H., Tsai H.S., Chen Y.H. (2011): Inhibition of endothelial adhesion molecule expression by Monascus purpureus fermented rice metabolites, monacolin K, ankaflavin, and monascin. Journal of the Science of Food and Agriculture, 91: 1751–1758. https://doi.org/10.1002/jsfa.4371
 
López J.L.C., Pérez J.A.S., Sevilla J.M.F., Fernández F.G.A., Grima E.M., Chisti Y. (2003): Production of lovastatin by Aspergillus terreus: effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enzyme & Microbial Technology, 33: 270–277.
 
Mulder K.C., Mulinari F., Franco O.L., Soares M.S., Magalhães B.S., Parachin N.S. (2015): Lovastatin production: From molecular basis to industrial process optimization. Biotechnology Advances, 33: 648–665. https://doi.org/10.1016/j.biotechadv.2015.04.001
 
Panda B.P., Javed S., Ali M. (2010): Optimization of fermentation parameters for higher lovastatin production in red mold rice through co-culture of Monascus purpureus and Monascus ruber. Food & Bioprocess Technology, 3: 373–378.
 
Patakova P. (2013): Monascus secondary metabolites: production and biological activity. Journal of Industrial Microbiology & Biotechnology, 40: 169–181.
 
Porcel E.M.R., López J.L.C., Pérez J.A.S., Chisti Y. (2008): Lovastatin production by aspergillus terreus, in a two-staged feeding operation. Journal of Chemical Technology & Biotechnology, 83: 1236–1243.
 
Priatni S., Damayanti S., Saraswaty V., Ratnaningrum D., Singgih M. (2014): The utilization of solid substrates on Monascus fermentation for anticholesterol agent production. Procedia Chemistry, 9: 34–39. https://doi.org/10.1016/j.proche.2014.05.005
 
Sang, H. L., Jang, G. Y., Min, Y. K., Kim, S., Lee, Y. R., Lee, J., Heon, S.J. (2015): Effect of monascus fermentation on content of monacolin k and antioxidant activities of germinated brown rice. Journal of the Korean Society of Food Science and Nutrition, 44: 1186–1193. https://doi.org/10.3746/jkfn.2015.44.8.1186
 
Seraman S., Rajendran A., Thangavelu V. (2010): Statistical optimization of anticholesterolemic drug lovastatin production by the red mold Monascus purpureus. Food & Bioproducts Processing, 88: 266–276.
 
Shi Y.-C., Pan T.-M. (2011): Beneficial effects of Monascus purpureus NTU 568-fermented products: a review. Applied Microbiology & Biotechnology, 90: 1207–1217.
 
Sun Y., Wang C. (2009): The optimal growth conditions for the biomass production of Isochrysis galbana, and the effects that phosphorus, Zn2+, CO2, and light intensity have on the biochemical composition of Isochrysis galbana, and the activity of extracellular CA. Biotechnology & Bioprocess Engineering, 14: 225–231.
 
Tang D., Gao Q., Zhao Y., Li Y., Chen P., Zhou J.,Xu R., Wu Z., Xu Y., Li H. (2018): Mg2+ reduces biofilm quantity in Acidithiobacillus ferrooxidans through inhibiting type pili IV formation. FEMS Microbiology Letters, 365: 01–008 https://doi.org/10.1093/femsle/fnx266
 
Yang C.W., Mousa S.A. (2012): The effect of red yeast rice (Monascus purpureus) in dyslipidemia and other disorders. Complementary Therapies in Medicine, 20: 466–474. https://doi.org/10.1016/j.ctim.2012.07.004
 
Yoshizawa Y., Witter D.J., Liu Y., Vederas J.C. (2002): Revision of the biosynthetic origin of oxygens in mevinolin (lovastatin), a hypocholesterolemic drug from Aspergillus terreus MF 4845. Journal of the American Chemical Society, 116: 2693–2694. https://doi.org/10.1021/ja00085a089
 
Valera H.R., Gomes J., Lakshmi S., Gururaja R., Suryanarayan S., Kumar D. (2005): Lovastatin production by solid state fermentation using Aspergillus flavipes. Enzyme & Microbial Technology, 37: 521–526.
 
Wang J-J., Lee C-L., Pan T-M. (2003): Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpur-eus NTU 601. Journal of Industrial Microbiology and Biotechnology, 30: 669–676. https://doi.org/10.1007/s10295-003-0097-2
 
Wang C., Chen D., Chen M., Wang Y., Li Z., Li F. (2015): Stimulatory effects of blue light on the growth, monascin and ankaflavin production in Monascus. Biotechnology Letters, 37: 1043–1048. https://doi.org/10.1007/s10529-014-1763-3
 
Zhang B-B., Lu L-P., Xu G-R. (2015): Why solid-state fermentation is more advantageous over submerged fermentation for converting high concentration of glycerol into Monacolin K by Monascus purpureus 9901: A mechanistic study. Journal of Biotechnology, 206: 60–65. https://doi.org/10.1016/j.jbiotec.2015.04.011
 
Battah M., El-Ayoty Y., Abomohra E.F., El-Ghany S.A. Esmael A. (2015): Effect of Mn2+, Co2+, and H2O2, on biomass and lipids of the green microalga Chlorella vulgaris, as a potential candidate for biodiesel production. Annals of Microbiology, 65: 155–162. https://doi.org/10.1007/s13213-014-0846-7
 
Chu J., Niu W., Zhang S., Zhuang Y., Hu H., Li Y. (2004): Effect of metal ions on the binding of gentamicin to the peptidoglycan of micromonospora echinospora. Process Biochemistry, 39: 1145–1150. https://doi.org/10.1016/S0032-9592(03)00228-0
 
Endo A. (1980): Monacolin K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase. Journal of Antibiotics, 33: 334–336. https://doi.org/10.7164/antibiotics.33.334
 
Hajjaj H., Niederberger P., Duboc P. (2001): Lovastatin biosynthesis by Aspergillus terreus in a chemically defined medium. Applied & Environmental Microbiology, 67: 2596–2602.
 
Haq I.U., Ali S., Qadeer M.A., Iqbal J. (2002): Effect of copper ions on mould morphology and citric acid productivity by Aspergillus niger, using molasses based media. Process Biochemistry, 37: 1085–1090. https://doi.org/10.1016/S0032-9592(01)00322-3
 
Ho B.Y., Pan T.M. (2009): The Monascus metabolite monacolin K reduces tumor progression and metastasis of lewis lung carcinoma cells. Journal of Agricultural & Food Chemistry, 57: 8258–8265.
 
Jia Z., Zhang X., Zhao Y., Cao X. (2009): Effects of divalent metal cations on lovastatin biosynthesis from Aspergillus terreus in chemically defined medium. World Journal of Microbiology & Biotechnology, 25: 1235–1241.
 
Lee C.L., Hung H.K., Wang J.J., Pan T.M. (2007): Improving the ratio of monacolin K to citrinin production of Monascus purpureus NTU 568 under dioscorea medium through the mediation of pH value and ethanol addition. Journal of Agricultural & Food Chemistry, 55: 6493–6502.
 
Lin C.P., Lin Y.L., Huang P.H., Tsai H.S., Chen Y.H. (2011): Inhibition of endothelial adhesion molecule expression by Monascus purpureus fermented rice metabolites, monacolin K, ankaflavin, and monascin. Journal of the Science of Food and Agriculture, 91: 1751–1758. https://doi.org/10.1002/jsfa.4371
 
López J.L.C., Pérez J.A.S., Sevilla J.M.F., Fernández F.G.A., Grima E.M., Chisti Y. (2003): Production of lovastatin by Aspergillus terreus: effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enzyme & Microbial Technology, 33: 270–277.
 
Mulder K.C., Mulinari F., Franco O.L., Soares M.S., Magalhães B.S., Parachin N.S. (2015): Lovastatin production: From molecular basis to industrial process optimization. Biotechnology Advances, 33: 648–665. https://doi.org/10.1016/j.biotechadv.2015.04.001
 
Panda B.P., Javed S., Ali M. (2010): Optimization of fermentation parameters for higher lovastatin production in red mold rice through co-culture of Monascus purpureus and Monascus ruber. Food & Bioprocess Technology, 3: 373–378.
 
Patakova P. (2013): Monascus secondary metabolites: production and biological activity. Journal of Industrial Microbiology & Biotechnology, 40: 169–181.
 
Porcel E.M.R., López J.L.C., Pérez J.A.S., Chisti Y. (2008): Lovastatin production by aspergillus terreus, in a two-staged feeding operation. Journal of Chemical Technology & Biotechnology, 83: 1236–1243.
 
Priatni S., Damayanti S., Saraswaty V., Ratnaningrum D., Singgih M. (2014): The utilization of solid substrates on Monascus fermentation for anticholesterol agent production. Procedia Chemistry, 9: 34–39. https://doi.org/10.1016/j.proche.2014.05.005
 
Sang, H. L., Jang, G. Y., Min, Y. K., Kim, S., Lee, Y. R., Lee, J., Heon, S.J. (2015): Effect of monascus fermentation on content of monacolin k and antioxidant activities of germinated brown rice. Journal of the Korean Society of Food Science and Nutrition, 44: 1186–1193. https://doi.org/10.3746/jkfn.2015.44.8.1186
 
Seraman S., Rajendran A., Thangavelu V. (2010): Statistical optimization of anticholesterolemic drug lovastatin production by the red mold Monascus purpureus. Food & Bioproducts Processing, 88: 266–276.
 
Shi Y.-C., Pan T.-M. (2011): Beneficial effects of Monascus purpureus NTU 568-fermented products: a review. Applied Microbiology & Biotechnology, 90: 1207–1217.
 
Sun Y., Wang C. (2009): The optimal growth conditions for the biomass production of Isochrysis galbana, and the effects that phosphorus, Zn2+, CO2, and light intensity have on the biochemical composition of Isochrysis galbana, and the activity of extracellular CA. Biotechnology & Bioprocess Engineering, 14: 225–231.
 
Tang D., Gao Q., Zhao Y., Li Y., Chen P., Zhou J.,Xu R., Wu Z., Xu Y., Li H. (2018): Mg2+ reduces biofilm quantity in Acidithiobacillus ferrooxidans through inhibiting type pili IV formation. FEMS Microbiology Letters, 365: 01–008 https://doi.org/10.1093/femsle/fnx266
 
Yang C.W., Mousa S.A. (2012): The effect of red yeast rice (Monascus purpureus) in dyslipidemia and other disorders. Complementary Therapies in Medicine, 20: 466–474. https://doi.org/10.1016/j.ctim.2012.07.004
 
Yoshizawa Y., Witter D.J., Liu Y., Vederas J.C. (2002): Revision of the biosynthetic origin of oxygens in mevinolin (lovastatin), a hypocholesterolemic drug from Aspergillus terreus MF 4845. Journal of the American Chemical Society, 116: 2693–2694. https://doi.org/10.1021/ja00085a089
 
Valera H.R., Gomes J., Lakshmi S., Gururaja R., Suryanarayan S., Kumar D. (2005): Lovastatin production by solid state fermentation using Aspergillus flavipes. Enzyme & Microbial Technology, 37: 521–526.
 
Wang J-J., Lee C-L., Pan T-M. (2003): Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpur-eus NTU 601. Journal of Industrial Microbiology and Biotechnology, 30: 669–676. https://doi.org/10.1007/s10295-003-0097-2
 
Wang C., Chen D., Chen M., Wang Y., Li Z., Li F. (2015): Stimulatory effects of blue light on the growth, monascin and ankaflavin production in Monascus. Biotechnology Letters, 37: 1043–1048. https://doi.org/10.1007/s10529-014-1763-3
 
Zhang B-B., Lu L-P., Xu G-R. (2015): Why solid-state fermentation is more advantageous over submerged fermentation for converting high concentration of glycerol into Monacolin K by Monascus purpureus 9901: A mechanistic study. Journal of Biotechnology, 206: 60–65. https://doi.org/10.1016/j.jbiotec.2015.04.011
 
download PDF

© 2019 Czech Academy of Agricultural Sciences