Production of butyric acid at constant pH by a solventogenic strain of Clostridium beijerinckii M., Patáková P. (2020): Production of butyric acid at constant pH by a solventogenic strain of Clostridium beijerinckii. Czech J. Food Sci., 38: 185-191.
download PDF

A solventogenic strain of Clostridium beijerinckii, NRRL B-598, was cultured for the production of butyric acid as the main fermentation product. However, unlike typical acetone-butanol-ethanol (ABE) fermentations, where pH is not regulated, in this study the pH was kept constant during fermentation. From the five pH values tested, 6.0, 6.5, 7.0, 7.5 and 8.0, pH 6.5 and 7.0 resulted in the highest concentrations of butyric acid, at 9.69 ± 0.09 g L–1 and 11.5 ± 0.39 g L–1, respectively. However, a low concentration of solvents, 1.8 ± 0.22 g L–1, was only reached at pH 7.0. These results are comparable with those from typical butyric acid producers, i.e. Clostridium butyricum and Clostridium tyrobutyricum strains. At pH 7.0, we succeeded in suppressing sporulation and prolonging the population viability, which was confirmed by flow cytometry combined with double fluorescence staining.

Al-Shorgani N.K.N., Kalil M.S., Yusoff W.M.W., Hamid A.A. (2018): Impact of pH and butyric acid on butanol production during batch fermentation using a new local isolate of Clostridium acetobutylicum YM1. Saudi Journal of Biological Sciences, 25: 339–348.
Armstrong D.W., Yamazaki H. (1986): Natural flavours production: A biotechnological approach. Trends in Biotechnology, 4: 264–268.
Bedford A., Gong J. (2018): Implications of butyrate and its derivatives for gut health and animal production. Animal Nutrition, 4: 151–159.
Branská B., Pecháčová Z., Kolek J., Vasylkivská M., Patáková P. (2018): Flow cytometry analysis of Clostridium beijerinckii NRRL B-598 populations exhibiting different phenotypes induced by changes in cultivation conditions. Biotechnology for Biofuels, 11: 99.
Cascone R. (2008): A replacement for bioethanol? Chemical Engineering Progress, 104: 4–9.
Duncan S.H., Barcenilla A., Stewart C.S., Pryde S.E., Flint H.J. (2002): Acetate utilization and butyryl coenzyme A (CoA): Acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Applied and Environmental Microbiology, 68: 5186–5190.
Dürre P. (2015): Clostridium. In: Goldman E., Green L.H. (eds): Practical Handbook of Microbiology (3rd Ed.). CRC Press, Boca Raton: 855–876.
Dwidar M., Park J.Y., Mitchell R.J., Sang B.I. (2012): The future of butyric acid in industry. The Scientific World Journal, 2012: 1–10.
Haus S., Jabbari S., Millat T., Janssen H., Fischer R.J., Bahl H., King J.R., Wolkenhauer O. (2011): A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture. BMC Systems Biology, 5: 10.
He G., Kong Q., Chen Q., Ruan H. (2005): Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB. Journal of Zhejiang University Science B, 6: 1076–1080.
Jo J.H., Lee D.S., Kim J., Park J.M. (2009): Effect of initial glucose concentrations on carbon and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Journal of Microbiology and Biotechnology, 19: 291–298.
Jones D.T., Woods D.R. (1986): Acetone-butanol fermentation revisited. Microbiological reviews, 50: 484–524.
Katagiri H., Imai K., Sugimori T. (1960): On the metabolism of organic acids by Clostridium acetobutylicum. Bulletin of the Agricultural Chemical Society of Japan, 24: 163–181.
Kolek J., Branská B., Drahokoupil M., Patáková P., Melzoch K. (2016): Evaluation of viability, metabolic activity and spore quantity in clostridial cultures during ABE fermentation. FEMS Microbiology Letters, 363: 1076–1080.
Li T., Yan Y., He J. (2014): Reducing cofactors contribute to the increase of butanol production by a wild-type Clostridium sp. strain BOH3. Bioresource Technology, 155: 220–228.
Lipovský J., Patáková P., Paulová L., Pokorný T., Rychtera M., Melzoch K. (2016): Butanol production by Clostridium pasteurianum NRRL B-598 in continuous culture compared to batch and fed-batch systems. Fuel Processing Technology, 144: 139–144.
Patáková P., Branská B., Sedlář K., Vasylkivská M., Jurečková K., Kolek J., Koscová P., Provazník I. (2019): Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in Clostridium beijerinckii NRRL B-598 at the transcriptomic level. Scientific Reports, 9: 1371.
Rodriguez-Nogales J.M., Roura E., Contreras E. (2005): Biosynthesis of ethyl butyrate using immobilized lipase: A statistical approach. Process Biochemistry, 40: 63–68.
Schwartz R.D., Keller F.A. (1982): Acetic acid production by Clostridium thermoaceticum in pH-controlled batch fermentations at acidic pH. Applied and Environmental Microbiology, 43: 1385–1392.
Sedlář K., Kolek J., Provazník I., Patáková P. (2017): Reclassification of non-type strain Clostridium pasteurianum NRRL B-598 as Clostridium beijerinckii NRRL B-598. Journal of Biotechnology, 244: 1–3.
Shu C., Cai J., Huang L., Zhu X., Xu Z. (2011): Biocatalytic production of ethyl butyrate from butyric acid with immobilized Candida rugosa lipase on cotton cloth. Journal of Molecular Catalysis B: Enzymatic, 72: 139–144.
Wang J., Yang H., Qi.G., Liu X., Gao X., Shen Y. (2019): Effect of lignocellulose-derived weak acids on butanol production by Clostridium acetobutylicum under different pH adjustment conditions. RSC Advances, 9: 1967–1975.
Załęski A., Banaszkiewicz A., Walkowiak J. (2013): Butyric acid in irritable bowel syndrome. Gastroenterology Review, 6: 350–353.
Zhang C., Yang H., Yang F., Ma Y. (2009): Current progress on butyric acid production by fermentation. Current Microbiology, 59: 656–663.
Zigová J., Šturdík E. (2000): Advances in biotechnological production of butyric acid. Journal of Industrial Microbiology & Biotechnology, 24: 153–160.
download PDF

© 2020 Czech Academy of Agricultural Sciences