Cost analysis of drying process by studying its kinetic parameters: A new study in Mexican chillies
Aissa W., El-Sallak M., Elhakem A. (2014): Performance of solar dryer chamber used for convective drying of sponge-cotton. Thermal Science, 18: 451–462.
https://doi.org/10.2298/TSCI110710084A
Babalis J., Papanicolaou E., Kyriakis N., Belessiotis V. (2006): Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). Journal of Food Engineering, 75: 205–214.
Bagheri H., Arabhosseini A., Kianmehr M., Chegini G. (2013): Mathematical modeling of thin layer solar drying of tomato slices. Agricultural Engineering International: The CIGR e-journal. 15: 146–153.
Bai J., Wang J., Xiao H., Ju H., Liu Y., Gao Z. (2013): Weibull distribution for modeling drying of grapes and its application. Transactions of the Chinese Society of Agricultural Engineering, 29: 278–285.
Bakal S., Gedam K., Prakash-Sharma G. (2010): Drying characteristics and kinetics of fluidised bed dried potato. Agricultural and Food Science, 19: 127–135.
https://doi.org/10.2137/145960610791542307
Balbay A., Sahin O., Ulker H. (2013): Modeling of convective drying kinetics of pistachio kernels in a fixed bed drying system. Thermal Science, 17: 839–846.
https://doi.org/10.2298/TSCI110307040B
Barrientos-Sotelo V., Cano-Casas R., Cruz-Orea A., Hernández-Rosas F., Hernández-Rosas J. (2015): Photoacoustic characterization of green, red and dehydrated Capsicum annuum L. variety Pasilla. Food Biophysics, 10: 481–486.
https://doi.org/10.1007/s11483-015-9415-2
Béttega R., Rosa G., Corrêa G., Freire T. (2014): Comparison of carrot (Daucuscarota) drying in microwave and in vacuum microwave. Brazilian Journal of Chemical Engineering, 31: 403–412.
https://doi.org/10.1590/0104-6632.20140312s00002668
Carrera-Escobedo J., Guzmán-Valdivia C., Ortiz-Rivera A., García-Ruiz M., Cruz-Domínguez O. (2019): CFD analysis for improving temperature distribution in a chilli drier. Thermal Science, 22: 255.
Carrera-Escobedo J., Guzmán-Valdivia C., Ortiz-Rivera A., García-Ruiz M., Cruz-Domínguez (2019): Quantitative assessment of the improvement of the drying process by increasing the turbulence level. Thermal Science Journal, 23: 953–963.
https://doi.org/10.2298/TSCI170509189C
Cortés-Rodríguez E., Pilatowsky-Figueroa E., Ruiz-Mercado C. (2013): Feasibility analysis of drying process habanero chilli using a hybrid-solar-fluidized bed dryer in Yucatán, México. Journal of Energy and Power Engineering, 7: 1898–1908.
Corzo O., Bracho N., Pereira A., Vásquez A. (2008): Weibull distribution for modeling air drying of coroba slices. LWT – Food Science and Technology, 41: 2023–2028.
https://doi.org/10.1016/j.lwt.2008.01.002
Di-Scala K., Crapiste G. (2008): Drying kinetics and quality changes during drying of red pepper. LWT – Food Science and Technology, 41: 789–795.
https://doi.org/10.1016/j.lwt.2007.06.007
Galindo G. (2007): Technical assistance service for dry chilli growers in Zacatecas (El servicio de asistencia técnica a los productores de chile seco en Zacatecas). Convergencia, 14: 137–165. (In Spanish)
Ghodbanan F., Alizadeh R., Shafiei S. (2017): Optimisation for energy consumption in drying section of fluting paper machine. Thermal science, 2: 1419–1429.
https://doi.org/10.2298/TSCI150503141G
Guzmán-Valdivia C., Carrera-Escobedo J., García-Ruiz M., Ortiz-Rivera A., Désiga-Orenday O. (2016): Design, development and control of a portable laboratory for the chilli drying process study. Mechatronics, 39: 160–173.
https://doi.org/10.1016/j.mechatronics.2016.05.003
Hudakorn T., Katejanekarn T. (2019): Performance of a square-corrugated air collector with attached internal fins solar drier for red chilli drying. Journal of Science and Technology. 31: 592–597.
Kaewkiew J., Nabnean S., Janjai S. (2012): Experimental investigation of the performance of a large-scale greenhouse type solar dryer for drying chilli in Thailand. Procedia Engineering, 32: 433–439.
https://doi.org/10.1016/j.proeng.2012.01.1290
Kiranoudis C., Maroulis Z., Tsami E., Marinos-Kouris D. (1993): Equilibrium moisture content and heat of desorption of some vegetables. Journal of Food Engineering, 20: 55–74.
https://doi.org/10.1016/0260-8774(93)90019-G
Lechtanska J., Szadzinska J., Kowalski S. (2015): Microwave- and infrared-assisted convective drying of green pepper: Quality and energy considerations. Chemical Engineering and Processing: Process Intensification, 98: 155–164.
https://doi.org/10.1016/j.cep.2015.10.001
Marabi A., Livings S., Jacobson M., Saguy I. (2003): Normalized Weibull distribution for modeling rehydration of food particulates. European Food Research and Technology. 217: 311–318.
https://doi.org/10.1007/s00217-003-0719-y
Milić D., Milan B., Banjac M. (2016): Fluid bed drying as upgrading technology for feasible treatment of kolubara lignite. Thermal Science, 20: 167–181.
https://doi.org/10.2298/TSCI150725172E
Pal U., Khan M., Mohanty S. (2008): Heat pump drying of green sweet pepper. Drying Technology, 26: 1584–1590.
https://doi.org/10.1080/07373930802467144
Reis C., Castro C., Devilla A., Oliveira A., Barbosa S., Rodovalho R. (2013): Effect of drying temperature on the nutritional and antioxidant qualities of cumari peppers from pará; (Capsicum chinense Jacquin). Brazilian Journal of Chemical Engineering, 30: 337–343.
https://doi.org/10.1590/S0104-66322013000200011
Sacilik K. (2007): The thin-layer modelling of tomato drying process. Agriculture Conspectus Scientificus, 7: 343–349.
Saeed I.E. (2010): Solar drying of roselle (Hibiscus sabdariffa L.): Effects of drying conditions on the drying constant and coefficients, and validation of the logarithmic model. Agricultural Engineering International: The CIGR e-journal, 12: 167–181.
Toledo R.T. (2007): Fundamentals of Food Process Engineering. 3rd Ed. Springer Science + Business Media, 48.
Turk-Togrul I., Pehlivan D. (2004): Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering, 65: 413–425.
Turhan M., Nazan-Turhan K., Sahbaz F. (1997): Drying kinetics of red pepper. Journal of Food Processing and Preservation, 21: 209–223.
https://doi.org/10.1111/j.1745-4549.1997.tb00777.x
Tzempelikos D., Vouros A., Barkadas A., Filios A., Margaris D. (2014): Case studies on the effect of the air drying conditions on the convective drying of quinces. Case Studies in Thermal Engineering, 3: 79–85.
https://doi.org/10.1016/j.csite.2014.05.001
Vega A., Fito P., Andrés A., Lemus R. (2007): Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo). Journal of Food Engineering, 79: 1460–1466.
Veras A., Béttega R., Freire F., Barrozo M., Freire J. (2012): Drying kinetics, structural characteristics and vitamin C retention of dedo-de-moça pepper (Capsicum baccatum) during convective and freeze drying. Brazilian Journal of Chemical Engineering, 29: 741–750.
https://doi.org/10.1590/S0104-66322012000400006
Villalpando-Guzmán J., Herrera-López J., Amaya-Delgado L., Godoy-Zaragoza A., Mateos-Díaz C. (2011): Effect of complementary microwave drying on three shapes of mango slices. Revista Mexicana de Ingeniería Química,10: 281–90.
Yamankaradeniz N., Sokmen F., Coskun A., Kaynakli O., Pastakkaya B. (2016): Performance analysis of a re-circulating heat pump dryer. Thermal Science, 20: 267–277.
https://doi.org/10.2298/TSCI130426069Y
Zeng M., Bi J., Chen Q., Jiao Y. (2015): Weibull distribution for modeling microwave vacuum drying of kiwifruit slices and its application. Journal of Chinese Institute of Food Science and Technology, 15: 129–135.