Cost analysis of drying process by studying its kinetic parameters: A new study in Mexican chillies

https://doi.org/10.17221/96/2020-CJFSCitation:

Carrera-Escobedo J., Cruz-Domínguez O., Guzmán-Valdivia C., Carrera-Escobedo V., García-Ruíz M., Durán-Muñoz H. (2020): Cost analysis of drying process by studying its kinetic parameters: A new study in Mexican chillies. Czech J. Food Sci., 38: 375–387.

download PDF

The drying process of vegetables is a widely used technique for food conservation. However, this process can be expensive, and the cost highly depends on the ventilation, drying temperature and drying characteristics of the chillies. The contribution of this new study was to obtain the drying kinetics parameters of two different types of Mexican Capsicum annuum (Puya and Mulato) and model it at different temperatures with two different ventilation levels. The aim of this study is to provide a method to analyse the cost of the drying process by studying its drying kinetics parameters. The experimental results were fitted to Weibull distribution and Newton’s model, obtaining an adequate numerical fit at different drying temperatures. The Weibull distribution demonstrates to be a better fit than Newton’s model. Drying kinetics parameters were also studied by a diffusive model with effective diffusivity. The effect of temperature on the diffusivity was described by the Arrhenius equation with activation energy of 49.7 kJ mol−1 for Puya and 24.1 kJ mol−1 for Mulato. The ventilation effect on chilli drying kinetics parameters was qualitatively assessed. As expected, the ventilation effect improved the drying rate and reduced the drying time, and consequently the cost of the drying process was reduced. In addition, a new method is presented to evaluate the cost of the drying process considering the kinetic parameters obtained. This new method allows evaluating the cost of the drying process in a simple way and with little experimental work. Consequently, it is possible to greatly reduce the cost of the drying process.

References:
Aissa W., El-Sallak M., Elhakem A. (2014): Performance of solar dryer chamber used for convective drying of sponge-cotton. Thermal Science, 18: 451–462. https://doi.org/10.2298/TSCI110710084A
 
Babalis J., Papanicolaou E., Kyriakis N., Belessiotis V. (2006): Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). Journal of Food Engineering, 75: 205–214.
 
Bagheri H., Arabhosseini A., Kianmehr M., Chegini G. (2013): Mathematical modeling of thin layer solar drying of tomato slices. Agricultural Engineering International: The CIGR e-journal. 15: 146–153.
 
Bai J., Wang J., Xiao H., Ju H., Liu Y., Gao Z. (2013): Weibull distribution for modeling drying of grapes and its application. Transactions of the Chinese Society of Agricultural Engineering, 29: 278–285.
 
Bakal S., Gedam K., Prakash-Sharma G. (2010): Drying characteristics and kinetics of fluidised bed dried potato. Agricultural and Food Science, 19: 127–135. https://doi.org/10.2137/145960610791542307
 
Balbay A., Sahin O., Ulker H. (2013): Modeling of convective drying kinetics of pistachio kernels in a fixed bed drying system. Thermal Science, 17: 839–846. https://doi.org/10.2298/TSCI110307040B
 
Barrientos-Sotelo V., Cano-Casas R., Cruz-Orea A., Hernández-Rosas F., Hernández-Rosas J. (2015): Photoacoustic characterization of green, red and dehydrated Capsicum annuum L. variety Pasilla. Food Biophysics, 10: 481–486. https://doi.org/10.1007/s11483-015-9415-2
 
Béttega R., Rosa G., Corrêa G., Freire T. (2014): Comparison of carrot (Daucuscarota) drying in microwave and in vacuum microwave. Brazilian Journal of Chemical Engineering, 31: 403–412. https://doi.org/10.1590/0104-6632.20140312s00002668
 
Carrera-Escobedo J., Guzmán-Valdivia C., Ortiz-Rivera A., García-Ruiz M., Cruz-Domínguez O. (2019): CFD analysis for improving temperature distribution in a chilli drier. Thermal Science, 22: 255.
 
Carrera-Escobedo J., Guzmán-Valdivia C., Ortiz-Rivera A., García-Ruiz M., Cruz-Domínguez (2019): Quantitative assessment of the improvement of the drying process by increasing the turbulence level. Thermal Science Journal, 23: 953–963. https://doi.org/10.2298/TSCI170509189C
 
Cortés-Rodríguez E., Pilatowsky-Figueroa E., Ruiz-Mercado C. (2013): Feasibility analysis of drying process habanero chilli using a hybrid-solar-fluidized bed dryer in Yucatán, México. Journal of Energy and Power Engineering, 7: 1898–1908.
 
Corzo O., Bracho N., Pereira A., Vásquez A. (2008): Weibull distribution for modeling air drying of coroba slices. LWT – Food Science and Technology, 41: 2023–2028. https://doi.org/10.1016/j.lwt.2008.01.002
 
Di-Scala K., Crapiste G. (2008): Drying kinetics and quality changes during drying of red pepper. LWT – Food Science and Technology, 41: 789–795. https://doi.org/10.1016/j.lwt.2007.06.007
 
Galindo G. (2007): Technical assistance service for dry chilli growers in Zacatecas (El servicio de asistencia técnica a los productores de chile seco en Zacatecas). Convergencia, 14: 137–165. (In Spanish)
 
Ghodbanan F., Alizadeh R., Shafiei S. (2017): Optimisation for energy consumption in drying section of fluting paper machine. Thermal science, 2: 1419–1429. https://doi.org/10.2298/TSCI150503141G
 
Guzmán-Valdivia C., Carrera-Escobedo J., García-Ruiz M., Ortiz-Rivera A., Désiga-Orenday O. (2016): Design, development and control of a portable laboratory for the chilli drying process study. Mechatronics, 39: 160–173. https://doi.org/10.1016/j.mechatronics.2016.05.003
 
Hudakorn T., Katejanekarn T. (2019): Performance of a square-corrugated air collector with attached internal fins solar drier for red chilli drying. Journal of Science and Technology. 31: 592–597.
 
Kaewkiew J., Nabnean S., Janjai S. (2012): Experimental investigation of the performance of a large-scale greenhouse type solar dryer for drying chilli in Thailand. Procedia Engineering, 32: 433–439. https://doi.org/10.1016/j.proeng.2012.01.1290
 
Kiranoudis C., Maroulis Z., Tsami E., Marinos-Kouris D. (1993): Equilibrium moisture content and heat of desorption of some vegetables. Journal of Food Engineering, 20: 55–74. https://doi.org/10.1016/0260-8774(93)90019-G
 
Lechtanska J., Szadzinska J., Kowalski S. (2015): Microwave- and infrared-assisted convective drying of green pepper: Quality and energy considerations. Chemical Engineering and Processing: Process Intensification, 98: 155–164. https://doi.org/10.1016/j.cep.2015.10.001
 
Marabi A., Livings S., Jacobson M., Saguy I. (2003): Normalized Weibull distribution for modeling rehydration of food particulates. European Food Research and Technology. 217: 311–318. https://doi.org/10.1007/s00217-003-0719-y
 
Milić D., Milan B., Banjac M. (2016): Fluid bed drying as upgrading technology for feasible treatment of kolubara lignite. Thermal Science, 20: 167–181. https://doi.org/10.2298/TSCI150725172E
 
Pal U., Khan M., Mohanty S. (2008): Heat pump drying of green sweet pepper. Drying Technology, 26: 1584–1590. https://doi.org/10.1080/07373930802467144
 
Reis C., Castro C., Devilla A., Oliveira A., Barbosa S., Rodovalho R. (2013): Effect of drying temperature on the nutritional and antioxidant qualities of cumari peppers from pará; (Capsicum chinense Jacquin). Brazilian Journal of Chemical Engineering, 30: 337–343. https://doi.org/10.1590/S0104-66322013000200011
 
Sacilik K. (2007): The thin-layer modelling of tomato drying process. Agriculture Conspectus Scientificus, 7: 343–349.
 
Saeed I.E. (2010): Solar drying of roselle (Hibiscus sabdariffa L.): Effects of drying conditions on the drying constant and coefficients, and validation of the logarithmic model. Agricultural Engineering International: The CIGR e-journal, 12: 167–181.
 
Toledo R.T. (2007): Fundamentals of Food Process Engineering. 3rd Ed. Springer Science + Business Media, 48.
 
Turk-Togrul I., Pehlivan D. (2004): Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering, 65: 413–425.
 
Turhan M., Nazan-Turhan K., Sahbaz F. (1997): Drying kinetics of red pepper. Journal of Food Processing and Preservation, 21: 209–223. https://doi.org/10.1111/j.1745-4549.1997.tb00777.x
 
Tzempelikos D., Vouros A., Barkadas A., Filios A., Margaris D. (2014): Case studies on the effect of the air drying conditions on the convective drying of quinces. Case Studies in Thermal Engineering, 3: 79–85. https://doi.org/10.1016/j.csite.2014.05.001
 
Vega A., Fito P., Andrés A., Lemus R. (2007): Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo). Journal of Food Engineering, 79: 1460–1466.
 
Veras A., Béttega R., Freire F., Barrozo M., Freire J. (2012): Drying kinetics, structural characteristics and vitamin C retention of dedo-de-moça pepper (Capsicum baccatum) during convective and freeze drying. Brazilian Journal of Chemical Engineering, 29: 741–750. https://doi.org/10.1590/S0104-66322012000400006
 
Villalpando-Guzmán J., Herrera-López J., Amaya-Delgado L., Godoy-Zaragoza A., Mateos-Díaz C. (2011): Effect of complementary microwave drying on three shapes of mango slices. Revista Mexicana de Ingeniería Química,10: 281–90.
 
Yamankaradeniz N., Sokmen F., Coskun A., Kaynakli O., Pastakkaya B. (2016): Performance analysis of a re-circulating heat pump dryer. Thermal Science, 20: 267–277. https://doi.org/10.2298/TSCI130426069Y
 
Zeng M., Bi J., Chen Q., Jiao Y. (2015): Weibull distribution for modeling microwave vacuum drying of kiwifruit slices and its application. Journal of Chinese Institute of Food Science and Technology, 15: 129–135.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti