Polyphenol composition of lettuce cultivars affected by mineral and bio-organic fertilisation


Bojilov D., Dagnon S., Kostadinov K., Filipov S. (2020): Polyphenol composition of lettuce cultivars affected by mineral and bio-organic fertilisation. Czech J. Food Sci., 38: 359–366.

download PDF

Three types of Lactuca sativa L. plants (green lettuces Batavia cv. Maritima and cv. Winter Butterhead, red lettuce Lolo rosa cv. Tuska) were investigated for their polyphenol composition. The lettuce plants were grown in polyethylene greenhouses and treated with different fertilisers. The qualitative and quantitative polyphenol composition was evaluated according to the use of mineral, organic (Italpollina and Arkobaleno) and bio (Lombricompost and EKOprop NX) fertilisers. The individual polyphenol components (caffeoyl derivatives and quercetin glycosides) were determined by high-performance liquid chromatography and the sample differences were estimated. The differences in the polyphenol content in the green lettuce cultivars in dependence on fertilisation were much higher than those in the red cultivar. In general, the red lettuce Lolo rosa cv. Tuska was characterised by the highest content of polyphenols. The highest content of all components was determined in the samples of red lettuce with the use of organic fertiliser Arkobaleno. In. the red lettuce and the green lettuce cv. Winter Butterhead organic fertilisation resulted in the higher content of polyphenols in comparison with mineral fertilisation and unfertilised samples. An exception was observed in cv. Maritima, where the unfertilised samples showed higher content of polyphenols compared to the fertilised samples

Assefa A.D., Choi S., Lee J.E., Sung J.S., Hur O.S., Ro N.Y., Lee H.S., Jang S.W., Rhee, J.H. (2019): Identification and quantification of selected metabolites in differently pigmented leaves of lettuce (Lactuca sativa L.) cultivars harvested at mature and bolting stages. BMC Chemistry, 13: 1–15.
Brown P.N., Chan M., Paley L., Betz J.M. (2011): Determination of major phenolic compounds in Echinacea spp. raw materials and finished products by high-performance liquid chromatography with ultraviolet detection: Single-Laboratory validation matrix extension. Journal of AOAC International, 94: 1400–1410.
Carter P., Gray L.J., Talbot D., Morris D.H., Khunti K., Davies M.J. (2013): Fruit and vegetable intake and the association with glucose parameters: A cross-sectional analysis of the Let’s Prevent Diabetes Study. European Journal of Clinical Nutrition, 67: 12–17. https://doi.org/10.1038/ejcn.2012.174
Cheng D.M., Pogrebnyak N., Kuhn P., Poulev A., Waterman C., Rojas-Silva P., Johnson, W.D., Raskin, I. (2014): Polyphenol-rich Rutgers Scarlet Lettuce improves glucose metabolism and liver lipid accumulation in diet-induced obese C57BL/6 mice. Nutrition, 30: S52–S58.
Dagnon S., Novkova Z., Bojilov D., Nedialkov P., Kouassi C. (2019): Development of surrogate standards approach for the determination of polyphenols in Vernonia amygdalina Del. Journal of Food Composition and Analysis, 82: 103231. https://doi.org/10.1016/j.jfca.2019.06.003
Dai J., Mumper R.J. (2010): Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15: 7313–7352. https://doi.org/10.3390/molecules15107313
Degl’innoocenti E., Pardossi A., Tattini M., Guidi, L. (2008): Phenolic compounds and antioxidant power in minimally processed salad. Journal of Food Biochemistry, 32: 642–653.
Essa M.M., Vijayan R.K., Castellano-Gonzalez G., Memon M.A., Braidy N., Guillemin G.J. (2012): Neuroprotective effect of natural products against Alzheimer’s disease. Neurochemical Research, 37: 1829–1842. https://doi.org/10.1007/s11064-012-0799-9
Fraga C.G., Litterio M.C., Prince, P.D., Calabró V., Piotrowski B., Galleano M. (2011): Cocoa flavanols: Effects on vascular nitric oxide and blood pressure. Journal of Clinical Biochemistry and Nutrition, 48: 63–67. https://doi.org/10.3164/jcbn.11-010FR
Gan Y.Z., Azrina A. (2016): Antioxidant properties of selected varieties of lettuce (Lactuca sativa L.) commercially available in Malaysia. International Food Research Journal, 23: 2357–2362.
Kostadinov K.P., Filipov S.V. (2013): Effect of composition of mixture on reproductive manifestations in greenhouse tomato. New Knowledge Journal of Science / Novo Znanie, 2: 104–110.
Lau F.C., Shukitt-Hale B., Joseph J.A. (2006): Mini review beneficial effects of berry fruit polyphenols on neuronal and behavioral aging. Journal of the Science of Food and Agriculture, 86: 2251–2255.
Llorach R., Martínez-Sánchez A., Tomás-Barberán F.A., Gil M.I., Ferreres F. (2008): Characterization of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chemistry, 108: 1028–1038. https://doi.org/10.1016/j.foodchem.2007.11.032
Materska M., Olszówka K., Chilczuk B., Stochmal A., Pecio Ł., Pacholczyk-Sienicka B., Piacente S., Pizza C., Masullo M. (2019): Polyphenolic profiles in lettuce (Lactuca sativa L.) after CaCl2 treatment and cold storage. European Food Research and Technology, 245: 733–744. https://doi.org/10.1007/s00217-018-3195-0
Park S.K., Tucker K.L., O’Neill M.S., Sparrow D., Vokonas P.S., Hu H., Schwartz J. (2009): Fruit, vegetable, and fish consumption and heart rate variability: The Veterans administration normative aging study. The American Journal of Clinical Nutrition, 89: 778–786.
Peng Y., Quancai S., Yeonhwa P. (2019): The bioactive effects of chicoric acid as a functional food ingredient. Journal of Medicinal Food, 22: 645–652. https://doi.org/10.1089/jmf.2018.0211
Reiss R., Johnston J., Tucker K., DeSesso J.M., Keen C.L. (2012): Estimation of cancer risks and benefits associated with a potential increased consumption of fruits and vegetables. Food and Chemistry Toxicology, 50: 4421–4427. https://doi.org/10.1016/j.fct.2012.08.055
Romani A., Pinelli P., Galardi C., Sani G., Cimato A., Heimler, D. (2002): Polyphenols in greenhouse and open-air-grown lettuce. Food Chemistry, 79: 337–342. https://doi.org/10.1016/S0308-8146(02)00170-X
Sofo A., Lundegårdh B., Mårtensson A., Manfra M., Pepe G., Sommella E., De Nisco M., Tenore G.C., Campiglia P., Scopa A. (2016): Different agronomic and fertilisation systems affect polyphenolic profile, antioxidant capacity and mineral composition of lettuce. Scientia Horticulturae, 204: 106–115. https://doi.org/10.1016/j.scienta.2016.04.003
Szeto Y.T., Kwok T.C.Y., Benzie I.F.F. (2004): Effects of a long-term vegetarian diet on biomarkers of antioxidant status and cardiovascular disease risk. Nutrition, 20: 863–866. https://doi.org/10.1016/j.nut.2004.06.006
Zhou W., Liang X., Dai P., Chen Y., Zhang Y., Zhang M., Lu L., Jin C., Lin X. (2019): Alteration of phenolic composition in lettuce (Lactuca sativa L.) by reducing nitrogen supply enhances its anti-proliferative effects on colorectal cancer cells. International Journal of Molecular Sciences, 20: 4205 https://doi.org/10.3390/ijms20174205
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti