Genetic variability for aluminium tolerance in sunflower (Helianthus annuus L.)

https://doi.org/10.17221/110/2021-CJGPBCitation:

Singh V.K., Chander S., Sheoran R.K., Anu, Sheoran O.P., Garcia-Oliveira A.L. (2022): Genetic variability for aluminium tolerance in sunflower (Helianthus annuus L.). Czech J. Genet. Plant Breed., 58: 201–209.

supplementary materialdownload PDF

Breeding for aluminium (Al) tolerance is a vital approach for enhancing the productivity of field crops in acidic soil regions where Al toxicity seems to be the most restraining factor for crop performance. Sunflower is generally considered extremely sensitive to Al toxicity; although no comprehensive information on the evaluation of sunflower genotypes for Al tolerance is available. In this study, 50 sunflower genotypes (set-I and set-II) were evaluated for Al tolerance at the seedling stage under hydroponic conditions. Substantial genetic variability in Al tolerance was observed among the studied genotypes. High estimates of heritability were obtained for both the total root length (TRL) and root regrowth (RRG), together with high estimates of genetic advance. A cluster analysis separated the genotypes into five different groups among the studied germplasm, the genotypes; NDLR-06 and EC-601861 were observed to be highly Al tolerant in terms of root regrowth under Al stress. In conclusion, the findings lreveal the complex mechanisms of Al tolerance in sunflower and may help to find new genetic resource for the improvement of Al tolerance in sunflower breeding.

References:
Aniol A.M. (1995): Physiological aspects of aluminium tolerance associated with the long arm of chromosome 2D of wheat (Triticum aestivum) genome. Theoretical and Applied Genetics, 91: 510–516. https://doi.org/10.1007/BF00222981
 
Arsintescu A., Neumann G., Petcu E., Stanciu D. (2001): Aspects of aluminium toxicity in sunflower. 1-aluminium stress induced in nutrient solutions. Romanian Agricultural Research, 15: 43–49.
 
Carver B.F., Ownby J.D. (1995): Acid soil tolerance in wheat. Advances in Agronomy, 54: 117–173.
 
Chander S., Meng Y., Zhang Y., Yan J., Li J. (2008): Comparison of nutritional traits variability in selected eighty-seven inbreds from Chinese maize (Zea mays L.) germplasm. Journal of Agricultural and Food Chemistry, 56: 6506–6511. https://doi.org/10.1021/jf7037967
 
Chen W.C., Xu B., Zhao W., Wang X.D., Wang Y. (2008): Improved Al tolerance of saffron (Crocus sativus L.) by exogenous polyamines. Acta Physiologiae Plantarum, 30: 121–127. https://doi.org/10.1007/s11738-007-0100-z
 
Ciamporova M. (2002): Morphological and structural responses of plant roots to aluminium at organ, tissue, and cellular levels. Biologia Plantarum, 45: 161–171. https://doi.org/10.1023/A:1015159601881
 
de Jesus D.D., de Azevedo Neto A.D. (2013): Aluminum tolerance in sunflower plants is associated with phosphorus content in the roots. Communications in Soil Science and Plant Analysis, 44: 3423–3430. https://doi.org/10.1080/00103624.2013.847453
 
Delhaize E., Ryan P.R. (1995): Aluminum toxicity and tolerance in plants. Plant Physiology, 107: 315–321. https://doi.org/10.1104/pp.107.2.315
 
FAOSTAT (2019): Available at http://www.fao.org/faostat/en/#data/QC (accessed Dec 21, 2020).
 
Garcia-Oliveira A.L., Benito C., Prieto P., de Andrade Menezes R., Rodrigues-Pousada C., Guedes-Pinto H., Martins-Lopes P. (2013): Molecular characterization of TaSTOP1 homoeologues and their response to aluminium and proton (H+) toxicity in bread wheat (Triticum aestivum L.). BMC Plant Biology, 13: 1–13. https://doi.org/10.1186/1471-2229-13-134
 
Garcia-Oliveira A.L., Martins-Lopes P., Tolra R., Poschenrieder C., Guedes-Pinto H., Benito C. (2016a): Differential physiological responses of portuguese bread wheat (Triticum aestivum L.) genotypes under aluminium stress. Diversity, 26: 2–12. https://doi.org/10.3390/d8040026
 
Garcia-Oliveira A.L., Chander S., Barcelo J., Poschenrie-der C. (2016b): Aluminium stress in crop plants. In: Yadav P., Kumar S., Jain V. (eds.): Recent Advances in Plant Stress Physiology. New Delhi, Astral International Pvt., Ltd.: 237–263.
 
Gower J.C. (1971): A general coefficient of similarity and some of its properties. Biometrics, 27: 857–871. https://doi.org/10.2307/2528823
 
Horsfall J.G. (1956): Principles of Fungicidal Action. Waltham, Chromica Botanica Company. https://doi.org/10.1097/00010694-195610000-00025
 
Huang C.Q., Liu G.D., Bai C.J. (2017): Evaluation of aluminum resistance among Zoysia Willd. accessions from China. HortScience, 52: 225–229. https://doi.org/10.21273/HORTSCI11107-16
 
Jesus D.D.S.D., Martins F.M., Azevedo Neto A.D.D. (2016): Structural changes in leaves and roots are anatomical markers of aluminum sensitivity in sunflower. Pesquisa Agropecuária Tropical, 46: 383–390. https://doi.org/10.1590/1983-40632016v4641426
 
Kinraide T.B. (1997): Reconsidering the rhizotoxicity of hydroxyl, sulphate and fluoride complexes of aluminium. Journal of Experimental Botany, 48: 1115–1124. https://doi.org/10.1093/jxb/48.5.1115
 
Kochian L.V., Pinferos M.A., Hoekenga O.A. (2005): The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant and Soil, 274: 175–195. https://doi.org/10.1007/s11104-004-1158-7
 
Kuswantoro H. (2017): Genetic variability and heritability of acid-adaptive soybean promising lines. Biodiversitas, 18: 378–382. https://doi.org/10.13057/biodiv/d180148
 
Ma J.F., Zheng S.J., Li X.F., Takeda K., Matsumoto H. (1997): A rapid hydroponic screening for aluminum tolerance in barley. Plant and Soil, 191: 133–137. https://doi.org/10.1023/A:1004257711952
 
Ma J.F., Ryan R.P., Delhaize E. (2001): Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 6: 273–278. https://doi.org/10.1016/S1360-1385(01)01961-6
 
Manivannan N. (2014): TNAUSTAT Statistical Package. Available at https://sites.google.com/site/tnaustat (accessed Apr 17, 2020).
 
Martins-Lopes P., Macas B., Guedes-Pinto H. (2009): Portuguese bread wheat germplasm evaluation for aluminium tolerance. Cereal Research Communications, 37: 179–188. https://doi.org/10.1556/CRC.37.2009.2.4
 
Noble A.D., Sumner M.E. (1988): Calcium and aluminium interactions and soybean growth in nutrient solutions. Communications in Soil Science and Plant Analysis, 19: 1119–1131. https://doi.org/10.1080/00103628809367999
 
Perrier X., Jacquemoud-Collet J.P. (2006): DARwin Software. Available at http://http//darwin.cirad.fr.
 
Pinheiro de C., Miguel A.A., Slaski J.J., Santo dos T.M.M., Gananca F.T., Abreu I., Taylor G.J., Clement Vieira M.R., Popova T.N., Franco E. (2003): Identification of aluminium resistance genotypes among Madeiran regional wheats. Communications in Soil Science and Plant Analysis, 34: 2967–2979. https://doi.org/10.1081/CSS-120025219
 
R Core Team (2020): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.r-project.org/
 
Rengel Z. (1992): Role of calcium in aluminium toxicity. New Phytologist, 121: 499–513. https://doi.org/10.1111/j.1469-8137.1992.tb01120.x
 
Richard C., Munyinda K., Kinkese T., Osiru D.S. (2015): Genotypic variation in seedling tolerance to aluminum toxicity in historical maize inbred lines of Zambia. Agronomy, 5: 200–219. https://doi.org/10.3390/agronomy5020200
 
Romheld V., Muller C., Marschner H. (1984): Localization and capacity of proton pumps in roots of intact sunflower plants. Plant Physiology, 76: 603–606. https://doi.org/10.1104/pp.76.3.603
 
Roy B., Bhadra S. (2014): Hydroponic screening for selection of aluminium tolerant rice (Oryza sativa L.) genotypes at seedlings stage using different indices. Cereal Research Communications, 42: 463–473. https://doi.org/10.1556/CRC.2013.0065
 
Sagers J.K., Waldron B.L., Creech J.E., Mott I.W., Bugbee B. (2017): Salinity tolerance of three competing rangeland plant species: Studies in hydroponic culture. Ecology and Evolution, 7: 10916–10929. https://doi.org/10.1002/ece3.3607
 
Singh D. (2012): Genetic control of aluminium tolerance in okra (Abelmoschus esculentus (L.) Moench). Scientia Horticulturae, 138: 134–137. https://doi.org/10.1016/j.scienta.2012.01.032
 
Singh D., Choudhary A.K. (2010): Inheritance pattern of Al tolerance in pea. Plant Breeding, 129: 688–692.
 
Singh D., Dikshit H.K., Singh R. (2012): Variation of aluminium tolerance in lentil (Lens culinaris Medik.). Plant Breeding, 131: 751–761. https://doi.org/10.1111/j.1439-0523.2012.01999.x
 
Singh V.K., Sheoran R.K., Chander S., Sharma B. (2019): Genetic variability, evaluation and characterization of sunflower (Helianthus annuus L.) germplasm. Bangladesh Journal of Botany, 48: 253–263. https://doi.org/10.3329/bjb.v48i2.47547
 
Waquil P.D., Matzenbacher R.G. (2000): Potential impact of research on wheat for acid soils in Brazil. Review conducted by CIMMYT and DFID Plant Sciences Research Programme. Available at https://repository.cimmyt.org/bitstream/handle/10883/3967/79554.pdf?sequence=1&isAllowed=y
 
Xu L., Liu W., Cui B., Wang N., Ding J., Liu C., Gao S., Zhang S. (2017): Aluminium tolerance assessment of 141 maize germplasms in a solution culture. Universal Journal of Agricultural Research, 5: 1–9. https://doi.org/10.13189/ujar.2017.050101
 
Zhao T., Pan X., Ou Z., Li Q., Zhang W. (2022): Comprehensive evaluation of waterlogging tolerance of eleven Canna cultivars at flowering stage. Scientia Horticulturae, 296: 110890. https://doi.org/10.1016/j.scienta.2022.110890
 
supplementary materialdownload PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti