The sweet potato transcription factor IbbHLH33 enhances chilling tolerance in transgenic tobacco

https://doi.org/10.17221/115/2021-CJGPB
supplementary materialdownload PDF

Chilling is an important abiotic stress in plants. Sweet potato is sensitive to cold damage due to its tropical origin. In this study, we identified a basic helix-loop-helix (bHLH) gene, IbbHLH33, from our cold-tolerance-related transcriptomic data. Further analyses revealed that IbbHLH33 encoded a nuclear protein and was most closely related to AtbHLH33. RT-qPCR analysis showed that IbbHLH33 was expressed at the highest level in the roots, and its expression was strongly induced by low temperature (4 °C), H2O2 and abscisic acid (ABA) treatments. Transgenic tobacco plants overexpressing IbbHLH33 were obtained by Agrobacterium-mediated transformation, which enhanced the chilling resistance of tobacco. At low temperatures, the proline content, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content increased significantly, while the relative conductivity decreased significantly. At the same time, the expression of proline synthesis related genes and antioxidant activity related genes increased, while the expression of ABA synthesis related genes decreased. The results showed that IbbHLH33 is a transcription factor encoding a gene of the bHLH family that regulates chilling tolerance. In conclusion, these data suggest that IbbHLH33 has the potential to improve chilling tolerance in tobacco and other plants.

References:
Atchley W.R., Terhalle W., Dress A. (1999): Positional dependence, cliques, and predictive motifs in the bHLH protein domain. Journal of Molecular Evolution, 48: 501–516. https://doi.org/10.1007/PL00006494
 
Berben G., Legrain M., Gilliquet V., Hilger F. (1990): The yeast regulatory gene PHO4 encodes a helix-loop-helix motif. Yeast, 6: 451–454. https://doi.org/10.1002/yea.320060510
 
Bovell-Benjamin A.C. (2007): Sweet potato: A review of its past, present, and future role in human nutrition. Advances in Food and Nutrition Research, 52: 1–59.
 
Chinnusamy V., Ohta M., Kanrar S., Lee B.H., Hong X., Agarwal M., Zhu J.K. (2003): ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development, 17: 1043–1054.
 
Chinnusamy V., Zhu J., Zhu J.K. (2007): Cold stress regulation of gene expression in plants. Trends in Plant Science, 12: 444–451. https://doi.org/10.1016/j.tplants.2007.07.002
 
Cutler S.R., Rodriguez P.L., Finkelstein R.R., Abrams S.R. (2010): Abscisic acid: Emergence of a core signaling network. Annual Review of Plant Biology, 61: 651–679. https://doi.org/10.1146/annurev-arplant-042809-112122
 
Daie J., Campbell W.F. (1981): Response of tomato plants to stressful temperatures: INCREASE in abscisic acid concentrations. Plant Physiology, 67: 26–29. https://doi.org/10.1104/pp.67.1.26
 
Ding Y.L., Li H., Zhang X.Y., Xie Q., Gong Z.Z., Yang S.H. (2015): OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Developmental Cell, 32: 278–289. https://doi.org/10.1016/j.devcel.2014.12.023
 
Dong Y., Wang C., Han X., Tang S., Liu S., Xia X., Yin W. (2014): A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochemical and Biophysical Research Communications, 450: 453–458. https://doi.org/10.1016/j.bbrc.2014.05.139
 
Du B., Nie N., Sun S., Hu Y., Bai Y., He S., Zhao N., Liu Q., Zhai H. (2021): A novel sweetpotato RING-H2 type E3 ubiquitin ligase gene IbATL38 enhances salt tolerance in transgenic Arabidopsis. Plant Science, 304: 110802. https://doi.org/10.1016/j.plantsci.2020.110802
 
Fan W., Zhang M., Zhang H., Zhang P. (2012): Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS ONE, 7: e37344. https://doi.org/10.1371/journal.pone.0037344
 
Fan W., Deng G., Wang H., Zhang H., Zhang P. (2015): Elevated compartmentalization of Na+ into vacuoles improves salt and cold stress tolerance in sweet potato (Ipomoea batatas). Physiologia Plantarum, 154: 560–571. https://doi.org/10.1111/ppl.12301
 
Ferré-D’Amaré A.R., Prendergast G.C., Ziff E.B., Burley S.K. (1993): Recognition by max of its cognate DNA through a dimeric b/HLH/Z domain. Nature, 363: 38–45. https://doi.org/10.1038/363038a0
 
Friedrichsen D.M., Nemhauser J., Muramitsu T., Maloof J.N., Alonso J., Ecker J.R., Furuya M., Chory J. (2002): Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics, 162: 1445–1456. https://doi.org/10.1093/genetics/162.3.1445
 
Guy C.L. (1990): Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 41: 187–223. https://doi.org/10.1146/annurev.pp.41.060190.001155
 
Han M., Yang C., Zhou J., Zhu J., Meng J., Shen T., Xin Z., Li H. (2020): Analysis of flavonoids and anthocyanin biosynthesis-related genes expression reveals the mechanism of petal color fading of Malus hupehensis (Rosaceae). Brazilian Journal of Botany, 43: 81–89. https://doi.org/10.1007/s40415-020-00590-y
 
Horsch R., Fry J., Hoffmann N., Eichholtz D., Rogers S., Fraley R. (1985): A simple and general method for transferring genes into plants. Science, New Series, 227: 1229–1231. https://doi.org/10.1126/science.227.4691.1229
 
Hu X., Liu J., Liu E., Qiao K., Gong S., Wang J., Zhou A., Zhang J. (2021): Arabidopsis cold-regulated plasma membrane protein Cor413pm1 is a regulator of ABA response. Biochemical and Biophysical Research Communications, 561: 88–92. https://doi.org/10.1016/j.bbrc.2021.05.032
 
Huang X.S., Wang W., Zhang Q., Liu J.H. (2013): A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiology, 162: 1178–1194. https://doi.org/10.1104/pp.112.210740
 
Jiang B., Shi Y., Peng Y., Jia Y., Yan Y., Dong X., Li H., Dong J., Li J., Gong Z., Thomashow M.F., Yang S. (2020): Cold-induced CBF–PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. Molecular Plant, 13: 894–906. https://doi.org/10.1016/j.molp.2020.04.006
 
Jin R., Kim B.H., Ji C.Y., Kim H.S., Li H.M., Ma D.F., Kwak S.S. (2017): Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. Plant Physiology and Biochemistry, 118: 45–54. https://doi.org/10.1016/j.plaphy.2017.06.002
 
Kaplan F., Kopka J., Sung D.Y., Zhao W., Popp M., Porat R., Guy C.L. (2007): Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. The Plant Journal, 50: 967–981. https://doi.org/10.1111/j.1365-313X.2007.03100.x
 
Kiribuchi K., Sugimori M., Takeda M., Otani T., Okada K., Onodera H., Ugaki M., Tanaka Y., Tomiyama-Akimotob C., Yamaguchi T., Minami E., Shibuya N., Omori T., Nishiyama M., Nojiri H. Yamane H. (2004): RERJ1, a jasmonic acid-responsive gene from rice, encodes a basic helix–loop–helix protein. Biochemical and Biophysical Research Communications, 325: 857–863. https://doi.org/10.1016/j.bbrc.2004.10.126
 
Lalk I., Dorffling K. (1985): Hardening, abscisic acid, proline and freezing resistance in two winter wheat varieties. Physiologia Plantarum, 63: 287–292. https://doi.org/10.1111/j.1399-3054.1985.tb04267.x
 
Laughon A., Scott M.P. (1984): Sequence of a Drosophila segmentation gene: Protein structure homology with DNA-binding proteins. Nature, 310: 25–31. https://doi.org/10.1038/310025a0
 
Li S., Liu X.A., Zhao L., Huang H., Li B., Song Z., Liang M., Zhang H., Wang L., Zhou S. (2021a): Overexpression of IbSINA5 increases cold tolerance through a CBF SINA-COR mediated module in sweet potato. Phyton lnternational Journal of Experimental Botany, 90: 761–772.
 
Li Z., Wang B., Zhang Z., Luo W., Tang Y., Niu Y., Chong K., Xu Y. (2021b): OsGRF6 interacts with SLR1 to regulate OsGA2ox1 expression for coordinating chilling tolerance and growth in rice. Journal of Plant Physiology, 260: 153406.
 
Liu P., Wang Y., Meng J., Zhang X., Zhou J., Han M., Yang C., Gan L., Li H. (2019): Transcriptome sequencing and expression analysis of genes related to anthocyanin biosynthesis in leaves of malus ‘profusion’ infected by Japanese apple rust. Forests, 10: 665. https://doi.org/10.3390/f10080665
 
Liu Q. (2017): Improvement for agronomically important traits by gene engineering in sweetpotato. Breeding Science, 67: 15–26. https://doi.org/10.1270/jsbbs.16126
 
Liu Y., Chen N., Zuo C., Wu Y., Che F., Chen B. (2018): The mechanism of color fading in sunburned apple peel. Acta Physiologiae Plantarum, 41: 2. https://doi.org/10.1007/s11738-018-2792-7
 
Llorente F., Oliveros J.C., Martínez-Zapater J.M., Salinas J. (2000): A freezing-sensitive mutant of Arabidopsis, frs1, is a new aba3 allele. Planta, 211: 648–655. https://doi.org/10.1007/s004250000340
 
Ludwig S.R., Habera L.F., Dellaporta S.L., Wessler S.R. (1989): Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proceedings of the National Academy of Sciences of the United States of America, 86: 7092–7096. https://doi.org/10.1073/pnas.86.18.7092
 
Murre C., McCaw P.S., Baltimore D. (1989): A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell, 56: 777–783. https://doi.org/10.1016/0092-8674(89)90682-X
 
Nanjo T., Kobayashi M., Yoshiba Y., Kakubari Y., Yamaguchi-Shinozaki K., Shinozaki K. (1999): Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letters, 461: 205–210. https://doi.org/10.1016/S0014-5793(99)01451-9
 
Oh J., Park E., Song K., Bae G., Choi G. (2020): Phytochrome interacting factor 8 inhibits phytochrome A-mediated far-red light responses in Arabidopsis. Plant Cell, 32: 186–205.
 
Peng T., Zhu X., Duan N., Liu J.H. (2014): PtrBAM1, a β -amylase-coding gene of Poncirus trifoliata, is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels. Plant, Cell and Environment, 37: 2754–2767. https://doi.org/10.1111/pce.12384
 
Picha D. (1987): Chilling injury, respiration, and sugar changes in sweet potatoes stored at low temperature. Journal of the American Society for Horticultural Science, 112: 497–502.
 
Porter W.C., Pharr D.M., Kijshman L.J., Pope D.T. (1976): Discoloration of chilled sweet potato [Ipomoea batatas (L.) Lam.] roots: Factors related to cultivar differences. Journal of Food Science, 41: 938–941. https://doi.org/10.1111/j.1365-2621.1976.tb00756_41_4.x
 
Sah S.K., Reddy K.R., Li J. (2016): Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 7: 571. https://doi.org/10.3389/fpls.2016.00571
 
Satoh R., Nakashima K., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. (2002): ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiology, 130: 709–719. https://doi.org/10.1104/pp.009993
 
Seo M., Koshiba T. (2002): Complex regulation of ABA biosynthesis in plants. Trends in Plant Science, 7: 41–48. https://doi.org/10.1016/S1360-1385(01)02187-2
 
Shi Y., Ding Y., Yang S. (2018): Molecular regulation of CBF signaling in cold acclimation. Trends in Plant Science, 23: 623–637. https://doi.org/10.1016/j.tplants.2018.04.002
 
Suzuki N., Koussevitzky S., Mittler R., Miller G. (2012): ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell and Environment, 35: 259–270. https://doi.org/10.1111/j.1365-3040.2011.02336.x
 
Tamminen I., Mäkelä P., Heino P., Palva E.T. (2001): Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. The Plant Journal, 25: 1–8. https://doi.org/10.1111/j.1365-313X.2001.00927.x
 
Thomashow M.F. (1999): Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 571–599. https://doi.org/10.1146/annurev.arplant.50.1.571
 
Weiser C.J. (1970): Cold resistance and injury in woody plants: Knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science, New Series, 169: 1269–1278. https://doi.org/10.1126/science.169.3952.1269
 
Withers L.A., King P.J. (1979): Proline: A novel cryoprotectant for the freeze preservation of cultured cells of Zea mays L. Plant Physiology, 64: 675–678. https://doi.org/10.1104/pp.64.5.675
 
Xiong L., Ishitani M., Lee H., Zhu J.K. (2001): The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. The Plant Cell, 13: 2063–2083.
 
Yang X., Wang R., Hu Q., Li S., Mao X., Jing H., Zhao J., Hu G., Fu J., Liu C. (2019): DlICE1, a stress-responsive gene from Dimocarpus longan, enhances cold tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 142: 490–499. https://doi.org/10.1016/j.plaphy.2019.08.007
 
Yao M., Ge W., Zhou Q., Zhou X., Luo M., Zhao Y., Wei B., Ji S. (2021): Exogenous glutathione alleviates chilling injury in postharvest bell pepper by modulating the ascorbate-glutathione (AsA-GSH) cycle. Food Chemistry, 352: 129458. https://doi.org/10.1016/j.foodchem.2021.129458
 
Yoo S.D., Cho Y.H., Sheen J. (2007): Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols, 2: 1565–1572. https://doi.org/10.1038/nprot.2007.199
 
Zhang H., Gao X., Zhi Y., Li X., Zhang Q., Niu J., Wang J., Zhai H., Zhao N., Li J., Liu Q., He S. (2019): A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytologist, 223: 1918–1936. https://doi.org/10.1111/nph.15925
 
Zhang H., Zhang Q., Zhai H., Gao S.P., Yang L., Wang Z., Xu Y.T., Huo J.X., Ren Z.T., Zhao N., Wang X., Li J., Liu Q., He S. (2020): IbBBX24 promotes the jasmonic acid pathway and enhances fusarium wilt resistance in sweet potato. The Plant Cell, 32: 1102–1123. https://doi.org/10.1105/tpc.19.00641
 
Zhao Q., Xiang X., Liu D., Yang A., Wang Y. (2018): Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the NtCBF pathway and reactive oxygen species homeostasis. Frontiers in Plant Science, 9: 381. https://doi.org/10.3389/fpls.2018.00381
 
Zhou Y., Zhai H., He S., Zhu H., Gao S., Xing S., Wei Z., Zhao N., Liu Q. (2020): The sweetpotato BTB-TAZ protein gene, IbBT4, enhances drought tolerance in transgenic Arabidopsis. Frontiers in Plant Science, 11: 877. https://doi.org/10.3389/fpls.2020.00877
 
supplementary materialdownload PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti