Atchley W.R., Terhalle W., Dress A. (1999): Positional dependence, cliques, and predictive motifs in the bHLH protein domain. Journal of Molecular Evolution, 48: 501–516.
https://doi.org/10.1007/PL00006494
Berben G., Legrain M., Gilliquet V., Hilger F. (1990): The yeast regulatory gene PHO4 encodes a helix-loop-helix motif. Yeast, 6: 451–454.
https://doi.org/10.1002/yea.320060510
Bovell-Benjamin A.C. (2007): Sweet potato: A review of its past, present, and future role in human nutrition. Advances in Food and Nutrition Research, 52: 1–59.
Chinnusamy V., Ohta M., Kanrar S., Lee B.H., Hong X., Agarwal M., Zhu J.K. (2003): ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development, 17: 1043–1054.
Chinnusamy V., Zhu J., Zhu J.K. (2007): Cold stress regulation of gene expression in plants. Trends in Plant Science, 12: 444–451.
https://doi.org/10.1016/j.tplants.2007.07.002
Cutler S.R., Rodriguez P.L., Finkelstein R.R., Abrams S.R. (2010): Abscisic acid: Emergence of a core signaling network. Annual Review of Plant Biology, 61: 651–679.
https://doi.org/10.1146/annurev-arplant-042809-112122
Daie J., Campbell W.F. (1981): Response of tomato plants to stressful temperatures: INCREASE in abscisic acid concentrations. Plant Physiology, 67: 26–29.
https://doi.org/10.1104/pp.67.1.26
Ding Y.L., Li H., Zhang X.Y., Xie Q., Gong Z.Z., Yang S.H. (2015): OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Developmental Cell, 32: 278–289.
https://doi.org/10.1016/j.devcel.2014.12.023
Dong Y., Wang C., Han X., Tang S., Liu S., Xia X., Yin W. (2014): A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochemical and Biophysical Research Communications, 450: 453–458.
https://doi.org/10.1016/j.bbrc.2014.05.139
Du B., Nie N., Sun S., Hu Y., Bai Y., He S., Zhao N., Liu Q., Zhai H. (2021): A novel sweetpotato RING-H2 type E3 ubiquitin ligase gene IbATL38 enhances salt tolerance in transgenic Arabidopsis. Plant Science, 304: 110802.
https://doi.org/10.1016/j.plantsci.2020.110802
Fan W., Zhang M., Zhang H., Zhang P. (2012): Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS ONE, 7: e37344.
https://doi.org/10.1371/journal.pone.0037344
Fan W., Deng G., Wang H., Zhang H., Zhang P. (2015): Elevated compartmentalization of Na+ into vacuoles improves salt and cold stress tolerance in sweet potato (Ipomoea batatas). Physiologia Plantarum, 154: 560–571.
https://doi.org/10.1111/ppl.12301
Ferré-D’Amaré A.R., Prendergast G.C., Ziff E.B., Burley S.K. (1993): Recognition by max of its cognate DNA through a dimeric b/HLH/Z domain. Nature, 363: 38–45.
https://doi.org/10.1038/363038a0
Friedrichsen D.M., Nemhauser J., Muramitsu T., Maloof J.N., Alonso J., Ecker J.R., Furuya M., Chory J. (2002): Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics, 162: 1445–1456.
https://doi.org/10.1093/genetics/162.3.1445
Guy C.L. (1990): Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 41: 187–223.
https://doi.org/10.1146/annurev.pp.41.060190.001155
Han M., Yang C., Zhou J., Zhu J., Meng J., Shen T., Xin Z., Li H. (2020): Analysis of flavonoids and anthocyanin biosynthesis-related genes expression reveals the mechanism of petal color fading of Malus hupehensis (Rosaceae). Brazilian Journal of Botany, 43: 81–89.
https://doi.org/10.1007/s40415-020-00590-y
Horsch R., Fry J., Hoffmann N., Eichholtz D., Rogers S., Fraley R. (1985): A simple and general method for transferring genes into plants. Science, New Series, 227: 1229–1231.
https://doi.org/10.1126/science.227.4691.1229
Hu X., Liu J., Liu E., Qiao K., Gong S., Wang J., Zhou A., Zhang J. (2021): Arabidopsis cold-regulated plasma membrane protein Cor413pm1 is a regulator of ABA response. Biochemical and Biophysical Research Communications, 561: 88–92.
https://doi.org/10.1016/j.bbrc.2021.05.032
Huang X.S., Wang W., Zhang Q., Liu J.H. (2013): A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiology, 162: 1178–1194.
https://doi.org/10.1104/pp.112.210740
Jiang B., Shi Y., Peng Y., Jia Y., Yan Y., Dong X., Li H., Dong J., Li J., Gong Z., Thomashow M.F., Yang S. (2020): Cold-induced CBF–PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. Molecular Plant, 13: 894–906.
https://doi.org/10.1016/j.molp.2020.04.006
Jin R., Kim B.H., Ji C.Y., Kim H.S., Li H.M., Ma D.F., Kwak S.S. (2017): Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. Plant Physiology and Biochemistry, 118: 45–54.
https://doi.org/10.1016/j.plaphy.2017.06.002
Kaplan F., Kopka J., Sung D.Y., Zhao W., Popp M., Porat R., Guy C.L. (2007): Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. The Plant Journal, 50: 967–981.
https://doi.org/10.1111/j.1365-313X.2007.03100.x
Kiribuchi K., Sugimori M., Takeda M., Otani T., Okada K., Onodera H., Ugaki M., Tanaka Y., Tomiyama-Akimotob C., Yamaguchi T., Minami E., Shibuya N., Omori T., Nishiyama M., Nojiri H. Yamane H. (2004): RERJ1, a jasmonic acid-responsive gene from rice, encodes a basic helix–loop–helix protein. Biochemical and Biophysical Research Communications, 325: 857–863.
https://doi.org/10.1016/j.bbrc.2004.10.126
Lalk I., Dorffling K. (1985): Hardening, abscisic acid, proline and freezing resistance in two winter wheat varieties. Physiologia Plantarum, 63: 287–292.
https://doi.org/10.1111/j.1399-3054.1985.tb04267.x
Laughon A., Scott M.P. (1984): Sequence of a Drosophila segmentation gene: Protein structure homology with DNA-binding proteins. Nature, 310: 25–31.
https://doi.org/10.1038/310025a0
Li S., Liu X.A., Zhao L., Huang H., Li B., Song Z., Liang M., Zhang H., Wang L., Zhou S. (2021a): Overexpression of IbSINA5 increases cold tolerance through a CBF SINA-COR mediated module in sweet potato. Phyton lnternational Journal of Experimental Botany, 90: 761–772.
Li Z., Wang B., Zhang Z., Luo W., Tang Y., Niu Y., Chong K., Xu Y. (2021b): OsGRF6 interacts with SLR1 to regulate OsGA2ox1 expression for coordinating chilling tolerance and growth in rice. Journal of Plant Physiology, 260: 153406.
Liu P., Wang Y., Meng J., Zhang X., Zhou J., Han M., Yang C., Gan L., Li H. (2019): Transcriptome sequencing and expression analysis of genes related to anthocyanin biosynthesis in leaves of malus ‘profusion’ infected by Japanese apple rust. Forests, 10: 665.
https://doi.org/10.3390/f10080665
Liu Q. (2017): Improvement for agronomically important traits by gene engineering in sweetpotato. Breeding Science, 67: 15–26.
https://doi.org/10.1270/jsbbs.16126
Liu Y., Chen N., Zuo C., Wu Y., Che F., Chen B. (2018): The mechanism of color fading in sunburned apple peel. Acta Physiologiae Plantarum, 41: 2.
https://doi.org/10.1007/s11738-018-2792-7
Llorente F., Oliveros J.C., Martínez-Zapater J.M., Salinas J. (2000): A freezing-sensitive mutant of Arabidopsis, frs1, is a new aba3 allele. Planta, 211: 648–655.
https://doi.org/10.1007/s004250000340
Ludwig S.R., Habera L.F., Dellaporta S.L., Wessler S.R. (1989): Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proceedings of the National Academy of Sciences of the United States of America, 86: 7092–7096.
https://doi.org/10.1073/pnas.86.18.7092
Murre C., McCaw P.S., Baltimore D. (1989): A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell, 56: 777–783.
https://doi.org/10.1016/0092-8674(89)90682-X
Nanjo T., Kobayashi M., Yoshiba Y., Kakubari Y., Yamaguchi-Shinozaki K., Shinozaki K. (1999): Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letters, 461: 205–210.
https://doi.org/10.1016/S0014-5793(99)01451-9
Oh J., Park E., Song K., Bae G., Choi G. (2020): Phytochrome interacting factor 8 inhibits phytochrome A-mediated far-red light responses in Arabidopsis. Plant Cell, 32: 186–205.
Peng T., Zhu X., Duan N., Liu J.H. (2014): PtrBAM1, a β -amylase-coding gene of Poncirus trifoliata, is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels. Plant, Cell and Environment, 37: 2754–2767.
https://doi.org/10.1111/pce.12384
Picha D. (1987): Chilling injury, respiration, and sugar changes in sweet potatoes stored at low temperature. Journal of the American Society for Horticultural Science, 112: 497–502.
Porter W.C., Pharr D.M., Kijshman L.J., Pope D.T. (1976): Discoloration of chilled sweet potato [Ipomoea batatas (L.) Lam.] roots: Factors related to cultivar differences. Journal of Food Science, 41: 938–941.
https://doi.org/10.1111/j.1365-2621.1976.tb00756_41_4.x
Sah S.K., Reddy K.R., Li J. (2016): Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 7: 571.
https://doi.org/10.3389/fpls.2016.00571
Satoh R., Nakashima K., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. (2002): ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiology, 130: 709–719.
https://doi.org/10.1104/pp.009993
Seo M., Koshiba T. (2002): Complex regulation of ABA biosynthesis in plants. Trends in Plant Science, 7: 41–48.
https://doi.org/10.1016/S1360-1385(01)02187-2
Shi Y., Ding Y., Yang S. (2018): Molecular regulation of CBF signaling in cold acclimation. Trends in Plant Science, 23: 623–637.
https://doi.org/10.1016/j.tplants.2018.04.002
Suzuki N., Koussevitzky S., Mittler R., Miller G. (2012): ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell and Environment, 35: 259–270.
https://doi.org/10.1111/j.1365-3040.2011.02336.x
Tamminen I., Mäkelä P., Heino P., Palva E.T. (2001): Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. The Plant Journal, 25: 1–8.
https://doi.org/10.1111/j.1365-313X.2001.00927.x
Thomashow M.F. (1999): Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 571–599.
https://doi.org/10.1146/annurev.arplant.50.1.571
Weiser C.J. (1970): Cold resistance and injury in woody plants: Knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science, New Series, 169: 1269–1278.
https://doi.org/10.1126/science.169.3952.1269
Withers L.A., King P.J. (1979): Proline: A novel cryoprotectant for the freeze preservation of cultured cells of Zea mays L. Plant Physiology, 64: 675–678.
https://doi.org/10.1104/pp.64.5.675
Xiong L., Ishitani M., Lee H., Zhu J.K. (2001): The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. The Plant Cell, 13: 2063–2083.
Yang X., Wang R., Hu Q., Li S., Mao X., Jing H., Zhao J., Hu G., Fu J., Liu C. (2019): DlICE1, a stress-responsive gene from Dimocarpus longan, enhances cold tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 142: 490–499.
https://doi.org/10.1016/j.plaphy.2019.08.007
Yao M., Ge W., Zhou Q., Zhou X., Luo M., Zhao Y., Wei B., Ji S. (2021): Exogenous glutathione alleviates chilling injury in postharvest bell pepper by modulating the ascorbate-glutathione (AsA-GSH) cycle. Food Chemistry, 352: 129458.
https://doi.org/10.1016/j.foodchem.2021.129458
Yoo S.D., Cho Y.H., Sheen J. (2007): Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols, 2: 1565–1572.
https://doi.org/10.1038/nprot.2007.199
Zhang H., Gao X., Zhi Y., Li X., Zhang Q., Niu J., Wang J., Zhai H., Zhao N., Li J., Liu Q., He S. (2019): A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytologist, 223: 1918–1936.
https://doi.org/10.1111/nph.15925
Zhang H., Zhang Q., Zhai H., Gao S.P., Yang L., Wang Z., Xu Y.T., Huo J.X., Ren Z.T., Zhao N., Wang X., Li J., Liu Q., He S. (2020): IbBBX24 promotes the jasmonic acid pathway and enhances fusarium wilt resistance in sweet potato. The Plant Cell, 32: 1102–1123.
https://doi.org/10.1105/tpc.19.00641
Zhao Q., Xiang X., Liu D., Yang A., Wang Y. (2018): Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the NtCBF pathway and reactive oxygen species homeostasis. Frontiers in Plant Science, 9: 381.
https://doi.org/10.3389/fpls.2018.00381
Zhou Y., Zhai H., He S., Zhu H., Gao S., Xing S., Wei Z., Zhao N., Liu Q. (2020): The sweetpotato BTB-TAZ protein gene, IbBT4, enhances drought tolerance in transgenic Arabidopsis. Frontiers in Plant Science, 11: 877.
https://doi.org/10.3389/fpls.2020.00877