Molecular screening of domestic apple cultivars for scab resistance genes in Greece

https://doi.org/10.17221/119/2019-CJGPBCitation:

Karapetsi L., Nianiou-Obeidat I., Zambounis A., Osathanunkul M., Madesis P. (2020): Molecular screening of domestic apple cultivars for scab resistance genes in Greece. Czech J. Genet. Plant Breed., 56: 165−169.

download PDF

Apple scab caused by Venturia inaequalis has the most destructive effects among other phytopathogens in apple crops all over the world. The integration of resistance genes from local and domestic cultivars is a prerequisite for the efficient control of this disease and is a main target in efficient breeding approaches. Across Greece, many domestic apple cultivars are reported without deep knowledge about the presence and diversity of scab resistance genes. In this study, the presence of five resistance genes (Rvi2, Rvi4, Rvi6, Rvi8 and Rvi11) was evaluated across twenty local and domestic apple genotypes, employing twelve molecular markers closely linked to known apple scab resistance loci. Significant differences and polymorphisms among the tested cultivars were detected suggesting that some of them carry a sufficient number of resistance genes. This observed genetic diversity could be exploited in ongoing breeding approaches as a natural source of polygenic resistance against apple scab.

References:
Bodea M., Pamfil D., Pătraşu B., Sestras R., Petricele I. (2008): Molecular markers for detecting scab (Venturia inaequalis) resistance in apple cultivars and their F1 hybrids. In: Proc. 43rd Croatian and 3rd Int. Symp. Agriculture. Opatija, February 18–21, 2008: 375–379.
 
Bowen J.K., Mesarich C.H., Bus V.G., Beresford R.M., Plummer K.M., Templeton M.D. (2011): Venturia inaequalis: the causal agent of apple scab. Molecular Plant Pathology, 12: 105–122. https://doi.org/10.1111/j.1364-3703.2010.00656.x
 
Bus V.G.M., Rikkerink E., Aldwinckle H.S., Caffier V., Durel C.E., Gardiner S., Gessler C., Groenwold R., Laurens F., Le Cam B., Luby J., Meulenbroek B., Kellerhals M., Parisi L., Patocchi A., Plummer K., Schouten H.J., Tartarini S., Van De Weg W.E. (2009): A proposal for the nomenclature of Venturia inaequalis races. Acta Horticulturae, 814: 739–746. https://doi.org/10.17660/ActaHortic.2009.814.125
 
Cova V., Bandara N., Liang W., Tartarini S., Patocchi A., Troggio M., Velasco R., Komjanc M. (2015): Fine mapping of the Rvi5 (Vm) apple scab resistance locus in the ‘Murray’ apple genotype. Molecular Breeding, 35: 200. https://doi.org/10.1007/s11032-015-0396-0
 
Doyle J.J., Doyle J.L. (1987): A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19: 11–15.
 
Hammer Ø., Harper D.A.T., Ryan P.D. (2001): PAST: palaeontological statistics software package for education and data analysis. Palaeontologia Electronica, 4: 1–9.
 
Khajuria Y.P., Kaul S., Wani A.A., Dhar M.K. (2018): Genetics of resistance in apple against Venturia inaequalis (Wint.) Cke. Tree Genetics & Genomes, 14: 1–20.
 
Kumar S., Volz R.K., Chagné D., Gardiner S. (2014): Breeding for apple (Malus × domestica Borkh.) fruit quality traits in the genomics era. In: Tuberosa R., Graner A., Frison E. (eds.): Genomics of Plant Genetic Resources. Dordrecht, Springer: 387–416.
 
Parita B., Kumar S.N., Darshan D., Karen P. (2018): Elucidation of genetic diversity among ashwagandha [Withania somnifera (L.) Dunal] genotypes using EST-SSR markers. Research Journal of Biotechnology, 13: 52–59.
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti