Potentials to breed for improved fibre digestibility in temperate Czech maize (Zea mays L.) germplasm


Schönleben M., Mentschel J., Střelec L. (2020): Potentials to breed for improved fibre digestibility in temperate Czech maize (Zea mays L.) germplasm. Czech J. Genet. Plant Breed., 56: 133−139.

download PDF

Cell wall digestibility is an important quality trait of modern silage maize cultivars. The symbiotic relationship between microbes and ruminant livestock enables the efficient upcycling of otherwise for human consumption unsuitable rumen digestible fibre or cell wall components into highly nutritious milk and meat. Before entering the Czech National List of Plant Varieties, new silage maize germplasm is extensively tested for different cell wall digestibility parameters. Recently published, the undigestible neutral detergent fibre (uNDF) cell wall digestibility approach promises even greater practical relevance. The aim of our study was, therefore, to assess the potential of the uNDF method, compared with current standard procedures, using a vast set of official Czech plant variety trial evaluations and Czech silage analyses from the 2018 cropping season. The uNDF method yielded a twice as high phenotypic standard deviation, compared with the current standard approaches. This is good news for plant breeders, official variety testing organisations, and farm professionals alike, enabeling faster variety improvement and simpler variety selection. On the other hand, due to the low differentiation potential, we discourage the use of the absolute lignin content when selecting for digestible silage maize varieties. Since between the digestibility traits enzymatic soluble organic substance (ELOS) and cellulase digestibility (DCS), a Pearson correlation close to one was observed, the substitution of one of these analytics by the uNDF method, may render valuable additional information in a highly economical manner.

Allen M.S., Coors J.G., Roth G.W. (2003): Corn silage. Chapter 12. In: Buxton D.R., Muck R.E., Harrison J.H. (eds.): Silage Science and Technology. Madison, American Society of Agronomy: 547–608.
Aufrère J., Baumont R., Delaby L., Peccatte J.R., Andrieu J., Andrieu J.P., Dulphy J.P. (2007): Forecasting the digestibility of forages using the pepsin-cellulase method. Update on the proposed equations. Productions Animales, 20: 129–136. (in French) https://doi.org/10.20870/productions-animales.2007.20.2.3445
Barrière Y., Guillet C., Goffner D., Pichon M. (2003): Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. A review. Animal Research, 52: 193–228. https://doi.org/10.1051/animres:2003018
Falconer D.S., Mackay T.F. (1996): Quantitative Genetics. Harlow, Pearson Prentice Hall: 184–207.
FAO (2010): Greenhouse Gas Emissions from the Dairy Sector: A Life Cycle Assessment. Rome, FAO Animal Production and Health Division: 10–98.
Geiger H.H. (2009): Doubled haploids. Chapter 32. In: Bennetzen J., Hake S. (eds.): Handbook of Maize: Genetics and Genomics. 1st Ed. New York, Springer-Verlag: 641–657.
Higgs R.J., Chase L.E., Ross D.A., Van Amburgh M.E. (2015): Updating the cornell net carbohydrate and protein system feed library and analyzing model sensitivity to feed inputs. Journal of Dairy Science, 98: 6340–6360. https://doi.org/10.3168/jds.2015-9379
Ledencan T., Simic D., Brkic I., Jambrovic A., Zdunic Z. (2003): Resistance of maize inbreds and their hybrids to fusarium stalk rot. Czech Journal of Genetics and Plant Breeding, 39: 15–20. https://doi.org/10.17221/3716-CJGPB
Li Y.G., Jiang D., Xu L.K., Zhang S.Q., Ji P.S., Pan H.Y., Jiang B.W., Shen Z.B. (2019): Evaluation of diversity and resistance of maize varieties to Fusarium spp. causing ear rot in maize under conditions of natural infection. Czech Journal of Genetics and Plant Breeding, 55: 131–137. https://doi.org/10.17221/81/2018-CJGPB
Meuwissen T.H.E., Hayes B.J., Goddard M.E. (2001): Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157: 1819–1829.
Moe A.J., Carr S.B. (1984): Laboratory assays and near-infrared reflectance spectroscopy for estimates of feeding value of corn silage. Journal of Dairy Science, 68: 2220–2226. https://doi.org/10.3168/jds.S0022-0302(85)81094-8
Mudry P., Kraic J. (2007): Inter- and intra-population variation of local maize (Zea mays L.) populations from Slovakia and Czech Republic. Czech Journal of Genetics and Plant Breeding, 43: 7–15. https://doi.org/10.17221/1904-CJGPB
National Plant Variety Office (2016): National List of Varieties. Bulletin of the Central Institute for Supervising and Testing in Agriculture: Czech Gazette for Plant Breeders Rights and National List of Plant Varieties: 9–15. (in Czech)
Perry T.W. (1996): Corn as a livestock feed. Chapter 17. In: Sprague G.F., Dudley J.W. (eds.): Corn and Corn Improvement. 3rd Ed. Madison, American Society of Agronomy: 941–963.
Povolny M., Vacek E., Schreiberova A. (2019): Silage Maize – Results of 2018 VCU Testing. Brno, National Plant Variety Office, CISTA: 2–135. (in Czech)
R Core Team (2018): R: A Language and Environment for Statistical Computing. Vienna, R Foundation for Statistical Computing. Available at http://www.R-project.org/.
Raffrenato E., Ross D.A., Van Amburgh M.E. (2018): Development of an in vitro method to determine rumen undigested aNDFom for use in feed evaluation. Journal of Dairy Science, 101: 9888–9900. https://doi.org/10.3168/jds.2018-15101
Russell J. (2002): Rumen Microbiology and its Role in Ruminant Nutrition. New York, Cornell University Press: 3–121.
Schönleben M., Mentschel J., Střelec L. (2020): Towards smart dairy nutrition: Improving sustainability and economics of dairy production. Czech Journal of Animal Science, 65: 153–161. https://doi.org/10.17221/16/2020-CJAS
Tilley J.M., Terry R.A. (1963): A two-stage technique for the in vitro digestion of forage crops. Journal of the British Grassland Society, 18: 104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
Van Amburgh M.E., Collao-Saenz E.A., Higgs R.J., Ross D.A., Recktenwald E.B., Raffrenato E., Chase L.E., Overton T.R., Mills J.K., Foskolos A. (2015): The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. Journal of Dairy Science, 98: 6361–6380. https://doi.org/10.3168/jds.2015-9378
Van Soest P.J., Robertson J.B., Lewis B.A. (1991): Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti